The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.
Aim Elevated inputs of biologically reactive nitrogen (N) are considered to be one of the most substantial threats to biodiversity in terrestrial ecosystems. Several attempts have been made to scrutinize the factors driving species loss following excess N input, but generalizations across sites or vegetation types cannot yet be made. Here we focus on the relative importance of the vegetation type, the local environment (climate, soil pH, wet deposition load) and the experimentally applied (cumulative) N dose on the response of the vegetation to N addition. Location Mainly North America and Europe.Methods We conducted a large-scale meta-analysis of in situ N addition experiments in different vegetation types, focusing on the response of biomass and species richness.Results Whereas the biomass of grasslands and salt marshes significantly increased with N fertilization, forest understorey vegetation, heathlands, freshwater wetlands and bogs did not show any significant response. Graminoids significantly increased in biomass following N addition, whereas bryophytes significantly lost biomass; shrubs, forbs and lichens did not significantly respond. The yearly N fertilization dose significantly influenced the biomass response of grassland and salt marshes, while for the other vegetation types none of the collected predictor variables were of significant influence. Species richness significantly decreased with N addition in grasslands and heathlands [Correction added on 23 March 2011, after first online publication: 'across all vegetation types' changed to 'in grasslands and heathlands']. The relative change in species richness following N addition was significantly driven by the cumulative N dose. Main conclusionsThe decline in species richness with cumulative N input follows a negative exponential pathway. Species loss occurs faster at low levels of cumulative N input or at the beginning of the addition, followed by an increasingly slower species loss at higher cumulative N inputs. These findings lead us to stress the importance of including the cumulative effect of N additions in calculations of critical load values.
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.Additional co-authors: Damien Bonal, Olivier Bouriaud, Helge Bruelheide, Filippo Bussotti, Monique Carnol, Bastien Castagneyrol, Yohan Charbonnier, David Anthony Coomes, Andrea Coppi, Cristina C. Bastias, Seid Muhie Dawud, Hans De Wandeler, Timo Domisch, Leena Finér, Arthur Gessler, André Granier, Charlotte Grossiord, Virginie Guyot, Stephan Hättenschwiler, Hervé Jactel, Bogdan Jaroszewicz, Tommaso Jucker, Julia Koricheva, Harriet Milligan, Sandra Mueller, Bart Muys, Diem Nguyen, Martina Pollastrini, Sophia Ratcliffe, Karsten Raulund-Rasmussen, Federico Selvi, Jan Stenlid, Fernando Valladares, Lars Vesterdal, Dawid Zielínski, and Markus Fische
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.