ObjectiveThe aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin.MethodsThe volatile compounds were investigated by using solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). For sensory assessment, the quantitative descriptive analysis (QDA) method was used.ResultsA total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively). The dominant compounds were: aromatic hydrocarbon (toluene); alkanes (hexane, heptane, and 2,2,4-trimethylpentane); aldehyde (hexanal); alcohol (2-furanmethanol); ketone (3-hydroxy-2-butanone); phenol (guaiacol); and terpenes (eucalyptol, cymene, γ-terpinen, and limonene). Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices.ConclusionThe analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production.
Contamination with harmful chemical substances, including organic compounds of the BTEX and PAH groups, constitutes one of the major threats to the functioning of soil habitat. Excessive contents of the above substances can exert adverse effects on soil organisms, reduce biodiversity, and thus deteriorate soil quality. The threat to soil ecosystems within areas particularly exposed to contamination with accumulating chemical compounds was assessed using the Ecological Risk Assessment (ERA) with a multi-stage Triad (triage rapid initial assessment) procedure (taking into account the different lines of evidence). The article presents the results of chemical and ecotoxicological study of soils sampled at sites affected by contamination from petrochemical industry. The study results provided foundations for developing the site specific ERA framework for the area examined.
Although soil water repellency (SWR) has been reported under different soils, climates, and vegetation types of the world, especially in forest land and following wildfires, the understanding of this variable continues to be rather limited. This study presented the characterization of SWR from wild fire measurements in a Scots pine Peucedano-Pinetum forest in the Kampinos National Park (central Poland), which is characterized by a temperate continental climate. The main objectives were: [i] To evaluate the potential occurrence, intensity, and persistence of soil water repellency in the surface layers of podzolized rusty soils during a dry summer; [ii] to determine whether a wildfire increased SWR, compared to the unburnt condition of soil; and [iii] to identify changes in hydrophobicity 13 months after a fire. The Water Drop Penetration Time (WDPT) test was used to assess persistence and intensity of soil SWR. Hydrophobicity is a natural phenomenon during periods of drought in temperate continental climates. The extreme class of SWR was observed in surface layers of up to 20 cm. A higher hydrophobicity was noted in the older habitats of the Peucedano-Pinetum forest. Maximum WDPT values (10,800 s) were found for an older ecosystem cover, during a dry summer. SWR in fire-affected soils is dependent on the intensity of the fire, as well as displaying spatial and seasonal variability. Thirteen months after a fire, the highest variability in the occurrence of non-wettability, was recorded in the surface layers of areas affected by a weak fire. A positive relationship between soil pH and WDPT values was determined to a 20 cm depth. Prolonged dry periods resulting from global climate change, may enhance the effects of increasing SWR; it therefore seems reasonable for future research on biosphere–climate interactions, to take the presence of hydrophobicity into account.
Progressing climate change increases the frequency of droughts and the risk of the occurrence of forest fires with an increasing range and a dramatic course. The availability of water and its movement within an ecosystem is a fundamental control of biological activity and physical properties, influencing many climatic processes, whereas soil water repellency (SWR) is a key phenomenon affecting water infiltration into the soil system. Focusing on wide-spectrum effects of fire on the soil system, the research was conducted on a pine stand (Peucedano-Pinetum W. Mat. (1962) 1973) in Kampinos National Park located in central Poland, affected by severe and weak fires, as well as control plots. The main aim of the study was to examine the regeneration of the ecosystem 28 months after the occurrence of a fire. The effect of SWR and soil moisture content, total organic carbon, nitrogen and pH, and gain an understanding of the environmental conditions and processes that shaped the evolution of the species structure of soil microorganism communities (fungal vs. bacterial) have been examined. The Water Drop Penetration Time (WDPT) test was used to assess spatial variability of SWR in 28 plots. Soil bacterial and fungal communities were analysed by Illumina’MISeq using 16S rRNA and Internal Transcribed Spacers 1 (ITS1) regions in six selected plots. After a relatively wet summer, elevated hydrophobicity occurred in areas affected by a weak fire as much as 20 cm into the soil depth. The severe fire and subsequent increase in the richness of the succession of non-forest species contributed to the elimination of hydrophobicity. SWR was more closely linked to the structure and diversity of soil microbial communities than soil physicochemical properties that took place in response to the fire. A statistically significant relationship between the relative occurrence of microorganisms (≥ 1.0% in at least one of the samples) and SWR was established for the following fungi and bacteria species: Archaeorhizomyces sp., Leotiomycetes sp., Byssonectria fusispora, Russula vesca, Geminibasidium sp., family Isosphaeraceae and Cyanobacteria (class 4C0d-2, order MLE1-12). Insight into the functional roles of the individual identified microbial taxa that may be responsible for the occurrence of hydrophobicity was also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.