The nanocomposite coatings composed of carbon nanotubes and various forms of copper were prepared in the two-step process. Firstly, carbon nanotubes were coated on stainless steel substrate using electrophoretic deposition at constant current. Then, the process of electrochemical deposition using copper(II) sulphate solutions was performed under high overpotential conditions. The modification of the copper(II) cations concentration in the solution and the deposition time provided the formation of various forms of crystals. The samples and their cross-sections were observed and examined using scanning electron microscope equipped with electron dispersive spectroscopy system. The analysis of chemical composition revealed that in addition to the pure copper crystals, the crystals characterized by the presence of copper and oxygen were formed. Therefore, Raman spectroscopy was applied to determine the unknown stoichiometry of this copper oxide. The point and in-depth analysis identified copper(I) oxide in the form of different size crystals depending on the concentration of the copper(II) sulphate solution. To confirm these findings, grazing incidence X-ray diffraction measurements were also performed. the combination of the applied methods has provided the detailed description of the preparation of the nanocomposite coatings with the proposed mechanism of copper(I) oxide formation.
I A czesław Miłosz -polski poeta, prozaik, eseista, tłumacz, historyk i krytyk literacki; laureat literackiej nagrody Nobla; w latach 1946-1950 przebywał w Stanach Zjednoczonych jako członek polskiej misji dyplomatycznej.anna Kowalska (1903Kowalska ( -1963 -polska pisarka i diarystka, współredaktorka "Zeszytów Wrocławskich" ."Ale cóż ma począć poeta, jeśli nie może wyrażać litości i grozy?"
Artykuł prezentuje uwagi wstępne oraz pytania o relację między naukowym a religijnym oglądem świata w poezji Leopolda Staffa na przykładzie występującej w niej obficie symboliki astralnej. Stawia on kwestię ewolucji języka naukowego tego autora w powiązaniu z przemianami wyobraźni poetów dwudziestolecia międzywojennego pod wpływem wiedzy astrofizycznej, powstałej w efekcie znaczących odkryć i obserwacji kosmicznych. Szkic jest zaproszeniem do spojrzenia na dzieje poezji polskiej XX wieku z perspektywy jej przeobrażeń w związku z postępem naukowym, zwłaszcza w dziedzinie astrofizyki. Poezja Staffa obejmująca okres od Młodej Polski do czasów po II wojnie światowej wydaje się dobrym pryzmatem, przez który takie przemiany daje się zaobserwować. Lyrical Astronomy of Leopold Staff The article showcases preliminary remarks and questions about the relation between scientific and religious worldview in Leopold Staff ’s poetry on the example of the astral symbolics appearing in it. It presents the question of the evolution of this author’s scientific language in connection with the transformation of the Interwar poets’ imagination under the influence of astrophysical knowledge gained as a result of important discoveries and cosmic observations. This attempt is an invitation to take a look at the history of the Polish poetry in the 20th century from the perspective of its transformations in connection to scientific, and especially, astrophysical progress. Staff ’s poetry dating from the Young Poland period to the post-World War II time seems to be a good lens, through which such transformations can be observed.
Roads to Mutuality Książka Marka Bernackiego Miłosz. Spotkania jest już trzecią poświęconą twórczości poety z Szetejń w dorobku badacza 1. Na zbiór składa się jedenaście szkiców publikowanych wcześniej, w co daje wgląd nota bibliograficzna. Umieszczając je w jednym tomie, autor znajduje dla nich nadrzędną zasadę spajającą, a jest nią kategoria spotkania rozumiana zarówno po Miłoszowsku, jak też w optyce filozofii dialogu i dramatu, będących dla Bernackiego ważną ramą interpretacji. Wybór takiego wspólnego mianownika wydaje się zasadny-Jan Błoński pisał, że twórczość ta "rodzi się w dialogu lub przynajmniej w jawnej obecności innego" 2. Krytyk rozwija tę myśl: "Lirykę Miłosza pisze tysiąc niewidzialnych rąk. Na każdą wypowiedź składa się całe bogactwo kulturalnej przeszłości. Dawne słowo ujawnia się aluzją, przytoczeniem, parafrazą, mnogością stylów, których poeta jest zarazem badaczem i kapelmistrzem" 3. Zamysłowi Bernackiego, by ująć szkice napisane w różnym czasie oraz kontekstach w pojemnej formule "spotkania" 4 , patronuje ta bodaj inspiracja.
Acta Technologica Agriculturae 1/2016Dušan Páleš et al.The most effective way for determination of curves for practical use is to use a set of control points. These control points can be accompanied by other restriction for the curve, for example boundary conditions or conditions for curve continuity (Sederberg, 2012). When a smooth curve runs only through some control points, we refer to curve approximation. The B-spline curve is one of such approximation curves and is addressed in this contribution. A special case of the B-spline curve is the Bézier curve Rédl et al., 2014). The B-spline curve is applied to a set of control points in a space, which were obtained by measurement of real vehicle movement on a slope (Rédl, 2007(Rédl, , 2008. Data were processed into the resulting trajectory (Rédl, 2012;Rédl and Kučera, 2008). Except for this, the movement of the vehicle was simulated using motion equations (Rédl, 2003;Rédl and Kročko, 2007). B-spline basis functionsBézier basis functions known as Bernstein polynomials are used in a formula as a weighting function for parametric representation of the curve (Shene, 2014). B-spline basis functions are applied similarly, although they are more complicated. They have two different properties in comparison with Bézier basis functions and these are: 1) solitary curve is divided by knots, 2) basis functions are not nonzero on the whole area. Every B-spline basis function is nonzero only on several neighbouring subintervals and thereby it is changed only locally, so the change of one control point influences only the near region around it and not the whole curve.These numbers are called knots, the set U is called the knot vector, and the half-opened interval 〈u i , u i + 1 ) is the i-th knot span. Seeing that knots u i may be equal, some knot spans may not exist, thus they are zero. If the knot u i appears p times, hence u i = u i + 1 = ... = u i + p -1 , where p >1, u i is a multiple knot of multiplicity p, written as u i (p). If u i is only a solitary knot, it is also called a simple knot. If the knots are equally spaced, i.e. (u i + 1 -u i ) = constant, for every 0 ≤ i ≤ (m -1), the knot vector or knot sequence is said uniform, otherwise it is non-uniform.Knots can be considered as division points that subdivide the interval 〈u 0 , u m 〉 into knot spans. All B-spline basis functions are supposed to have their domain on 〈u 0 , u m 〉. We will use u 0 = 0 and u m = 1.To define B-spline basis functions, we need one more parameter k, which gives the degree of these basis functions. Recursive formula is defined as follows:This definition is usually referred to as the Cox-de Boor recursion formula. If the degree is zero, i.e. k = 0, these basis functions are all step functions that follows from Eq. (1). N i, 0 (u) = 1 is only in the i-th knot span 〈u i , u i + 1 ). For example, if we have four knots u 0 = 0, u 1 = 1, u 2 = 2 and u 3 = 3, knot spans 0, 1 and 2 are 〈0, 1), 〈1, 2) and 〈2, 3), and the basis functions of degree 0 are N 0, 0 (u) = 1 on interval 〈0, 1) Acta In this co...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.