The paper presents the results of an evaluation of the quality of eggs from laying hens kept in caged and free range systems using traditional methods and ultra-weak luminescence (USL). It was found that the tested eggs were fresh and were characterized by the required quality, as demonstrated by analysis of the egg white and egg yolk. Eggs from free-range laying hens were characterized by an eight-fold higher emission of photons compared to eggs from caged hens, and they had over three times higher content of natural antioxidants in the form of carotenoids. Most probably, the higher number of photons emitted is associated with a higher content of biologically active substances in the material under study. Photon emission also varies in different ways depending on the specific hen breeding system. Differences in time in the identified maximum values of photon emission result from the composition of individual parts of the egg. Different times in which the emission peaks occurred for free-range eggs and for caged eggs were observed. The application of the USL method in order to confirm its usefulness in the assessment of food quality requires further research.
In this work, we propose a novel method for the preparation of polypyrrole (PPy) layers on textile fabrics using a reactive inkjet printing technique with direct freezing of inks under varying temperature up to −16 °C. It was found that the surface resistance of PPy layers on polypropylene (PP) fabric, used as a standard support, linearly decreased from 6335 Ω/sq. to 792 Ω/sq. with the decrease of polymerization temperature from 23 °C to 0 °C. The lowest surface resistance (584 Ω/sq.) of PPy layer was obtained at −12 °C. The spectroscopic studies showed that the degree of the PPy oxidation as well as its conformation is practically independent of the polymerization temperature. Thus, observed tendences in electrical conductivity were assigned to change in PPy layer morphology, as it is significantly influenced by the reaction temperature: the lower the polymerization temperature the smoother the surface of PPy layer. The as-coated PPy layers on PP textile substrates were further assembled as the electrodes in symmetric all-solid-state supercapacitor devices to access their electrochemical performance. The electrochemical results demonstrate that the symmetric supercapacitor device made with the PPy prepared at −12 °C, showed the highest specific capacitance of 72.3 F/g at a current density of 0.6 A/g, and delivers an energy density of 6.12 Wh/kg with a corresponding power density of 139 W/kg.
Staphylococcus aureus is a bacterium which people have been in contact with for thousands of years. Its presence often leads to severe disorders of the respiratory and circulatory systems. The authors of this article present a prototype of a textronic sensor enabling the detection of this bacterium. This sensor was created using a process of physical vacuum deposition on a flexible textile substrate which can be implemented on clothing. With increasing numbers of bacterial colonies, changes in the sensor’s electrical parameters were observed. The sensor’s resistance reduced by 50% and the capacitance more than doubled within the first two days of starting bacterial cultures. Extensive changes in electrical parameters were observed at 100 Hz and 120 Hz of the measurement signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.