This paper concerns an optimal dividend distribution problem for an insurance company with surplus-dependent premium. In the absence of dividend payments, such a risk process is a particular case of so-called piecewise deterministic Markov processes. The control mechanism chooses the size of dividend payments. The objective consists in maximizing the sum of the expected cumulative discounted dividend payments received until the time of ruin and a penalty payment at the time of ruin, which is an increasing function of the size of the shortfall at ruin. A complete solution is presented to the corresponding stochastic control problem. We identify the associated Hamilton-Jacobi-Bellman equation and find necessary and sufficient conditions for optimality of a single dividend-band strategy, in terms of particular Gerber-Shiu functions. A number of concrete examples are analyzed.
Abstract. Asymptotic expansions of any order for expectations of inverses of random variables with positive binomial and negative binomial distributions are obtained in terms of the Eulerian polynomials. The paper extends and improves upon an expansion due to David and Johnson (1956-7).
This paper concerns the dual risk model, dual to the risk model for insurance applications, where premiums are surplus-dependent. In such a model premiums are regarded as costs, while claims refer to profits. We calculate the mean of the cumulative discounted dividends paid until ruin, if the barrier strategy is applied. We formulate associated Hamilton-Jacobi-Bellman equation and identify sufficient conditions for a barrier strategy to be optimal. Some numerical examples are provided when profits have exponential law.
A problem of optimal dividend policy for a firm with a bank loan is considered. A regularity of a value function is established. A numerical example of calculating value function is given
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.