The termination pattern of median raphe axons was studied in the rat dentate gyrus using Phaseolus vulgaris leucoagglutinin as an anterograde tracer, in combination with postembedding immunostaining for gamma-amino-butyric acid (GABA), and pre-embedding immunostaining for calbindin D28k, parvalbumin and GABA. Postembedding immunogold staining for GABA revealed that the majority (73.7%) of anterogradely labelled median raphe boutons make synaptic contacts with GABA-immunoreactive postsynaptic targets, mainly with dendritic shafts and perikarya. Pre-embedding immunocytochemical double staining for the anterograde tracer and GABA confirmed the electron microscopic results and showed that varicose median raphe axons establish multiple contacts with fusiform interneurons in the hilus and different types of basket cells in the granule cell layer. Some of the innervated cells were shown to contain calbindin D28k, whereas GABAergic interneurons containing another calcium-binding protein, parvalbumin, were never seen to receive multiple contacts from axons of raphe origin. Our results suggest that serotonergic median raphe fibres influence the firing of dentate granule cells via local inhibitory interneurons. The mechanism of using these interneurons with extensive local connections as monosynaptic targets may explain the great efficacy of this pathway in the control of hippocampal electrical activity.
Tuberomammillary neurons in the posterior hypothalamus are the sole source of neuronal histamine in adult mammalian brain. In the rat, these cells are reported to contain immunoreactivity for gamma-aminobutyric acid (GABA) and several neuropeptides. We compared the presence of these substances in the tuberomammillary cells of the rat, mouse, and guinea pig. In all three species, all histamine-immunoreactive neuronal cell bodies were positive for GABA. This suggests that GABAergic transmission may be important in tuberomammillary function. No cell bodies immunoreactive for thyrotropin releasing hormone (TRH) were found in the guinea pig or mouse tuberomammillary area. In contrast, about 14% of the histamine-immunoreactive tuberomammillary cells in the rat were TRH-positive. These cells were small or medium-sized and were located only in the medial part of the tuberomammillary complex. An antibody against porcine galanin stained about 45% of the tuberomammillary cell bodies in the rat and about 28% in the mouse, but none in the guinea pig. A large proportion of the cells in the rat and mouse, but none in the guinea pig, were positive for met-enkephalin-arg-phe. In contrast, all histamine-containing tuberomammillary cells in the guinea pig, but none in the rat or mouse, were immunoreactive for met-enkephalin. This may indicate a different expression of proenkephalin-derived peptides in the tuberomammillary neurons in these species. Some substance P-immunoreactive cell bodies were located in the tuberomammillary area in all three species. However, only 3% of the histamine-immunoreactive cell bodies in the rat and mouse but none in the guinea pig were substance P-positive. The neurochemical properties of the tuberomammillary nucleus that exhibited species commonality deserve to be studied neurochemically and electrophysiologically in order to determine the functional relevance of coexisting transmitters in this nucleus.
HB-GAM (heparin-binding growth-associated molecule) is a secretory, extracellular matrix-associated protein that was isolated by screening for proteins that enhance neurite outgrowth in perinatal rat brain neurons. In the present study we have investigated the possible role of HB-GAM in cell proliferation in the developing rat limb. Exogenously added recombinant HB-GAM was found to inhibit the proliferation of mesenchymal and epithelial cells in cultured limb buds, as demonstrated by bromodeoxyuridine incorporation and by staining for PCNA (proliferating cell nuclear antigen). The inhibitory effect of HB-GAM on cell proliferation was reversed by heparin, suggesting that HB-GAM may bind to a heparin-type carbohydrate epitope that is required for cell proliferation in the developing limb. Endogenous HB-GAM of the developing limb was found to be expressed in a proximal-to-distal pattern, in agreement with the putative role in proliferation arrest and cell differentiation. In addition, double immunostaining of HB-GAM with PCNA showed that in early (Embryonic Day 12) limb mesenchyme HB-GAM was associated mainly with the surface of growth-arrested cells. Furthermore, HB-GAM was associated with the muscle surface, as demonstrated in double immunostaining of HB-GAM with desmin and myosin heavy chain proteins. Coinciding with the onset of synapse formation (Embryonic Day 16), HB-GAM was found in patches on the muscle cell surface in close proximity to nicotinic acetylcholine receptor clusters. This finding is in agreement with a previous study that has suggested a role for HB-GAM in the differentiation of the neuromuscular junction in Xenopus muscle.
A monoclonal antibody (mAb), 129CD8 was raised against a C-terminal fragment (aa28-37) of alpha-human calcitonin gene-related peptide (CGRP) coupled to bovine serum albumin. The specificity of the monoclonal antibody 129CD8 was corroborated by dot immunobinding experiments, enzyme-linked immunoassay and immunostaining of tissue sections. In vitro studies showed that the mAb 129CD8 readily recognized the fragment 28-37 of alpha-human CGRP and to a slightly lesser degree whole alpha-human CGRP and the fragments containing the C-terminal part of the molecule. The mAb 129CD8 also recognized the beta-human CGRP but not the alpha-rat CGRP. The mAb 129CD8 did not react with substance P, katacalcin, calcitonin, amylin or fragments of alpha-human CGRP lacking the C-terminal part of the molecule. Immunocytochemical staining was performed on human skin, guinea-pig thyroid and salivary glands and the trigeminal ganglion, and rat thyroid gland. Our findings demonstrate, in keeping with previous studies, that in human skin, nerve fibres containing CGRP immunoreactivity are found in both epidermis and dermis. In accordance with previous investigators, the Merkel cells were immunoreactive for CGRP. In the guinea-pig and rat thyroid gland CGRP immunoreactivity was localized in the C-cells. The distribution of CGRP immunoreactivity in the guinea-pig salivary glands is different from that previously reported for rat salivary glands. In the guinea-pig trigeminal ganglion, CGRP immunoreactivity was localized mainly in small-sized neurons and fibres traversing the ganglion.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.