Abstract. The post-Carboniferous crustal evolution of the German Continental Deep Drilling Program (KTB) area, as summarized in this paper, could not be predicted from surface observations: deep drilling was essential for its revelation. The most conspicuous and unexpected feature discovered in the drill hole is the absence of marked gradients with respect to the preCarboniferous record. There are no depth-related differences in K-Ar cooling ages of hornblende and white mica, in petrology or in lithology. All metamorphic rocks encountered, both at the surface as well as in the drill hole down to 9100 m depth, were below 300øC from the Carboniferous onward. The late to post-Carboniferous deformation is essentially confined to several fault zones. A major fault zone encountered in the drill hole at 7000 m depth is linked by a prominent seismic reflector to the Franconian Lineament, the surface boundary between Variscan basement and Mesozoic cover. This fault zone probably formed in the late Paleozoic and reactivated as a reverse fault in the Mesozoic. Two important episodes of NE-SW directed shortening by movements along reverse faults took place in the early Triassic and in the late Cretaceous, as indicated by the distribution of apatite and titanite fission-track ages, the sericite K-Ar ages of fault rocks, and the sedimentary record in the adjacent basins. Upper crustal slices were detached at a specific level, corresponding to the approximate position of the brittle-ductile transition in post-Variscan times, and form an antiformal stack that was penetrated by the KTB throughout its entire depth range.
Since 1985, apatite fission-track analysis was applied to more than 70 samples from surface outcrops and shallow boreholes at the western margin of the Bohemian massif. Apatite ages were determined by the grain-population method. Additional information from the frequency distributions of fully confined spontaneous tracks was used for modelling of t-T paths in the low-temperature range ((120°C). Seven zircon samples were dated by the external detector method. Zircon ages between 283 and 215 Ma indicate unroofing during the Permian molasse stage and the Triassic. Tectonic quiescence and slow subsidence prevailed from the Jurassic until the middle Cretaceous. In the basement area south of Weiden, a Mesozoic partial annealing zone (for apatite fission tracks) is now exposed at the surface. Farther north, the basement was affected by stronger Cretaceous and Palaeogene erosion, which yielded cooling ages between 110 and 49 Ma. This second period of post-Variscan denudation was correlated to reverse faulting along the Franconian Line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.