The adult male of Cyclestheria hislopi, sole member of the spinicaudate conchostracan clam shrimp family Cyclestheriidae and a species of potential phylogenetic importance, is described for the first time. Several previously unknown features are revealed. Among these are (1) the morphology of the dorsal organ, which is roughly similar in shape to the supposedly homologous structure in other clam shrimps but bears a relatively large, centrally located pore unique to the species; (2) an anterior cuticular pore presumably leading to the ‘internal’ space surrounding the compound eyes, and thereby homologous to the same pore in other clam shrimps and in the Notostraca; (3) the spination and setation of the antennae and thoracopods, and (4) the mature male first thoracopods (claspers). The male claspers are paired and essentially equal in size and shape on right and left sides of the body. The second pair of thoracopods are not modified as claspers, a situation different from all other spinicaudate families but shared (plesiomorphic we propose) with the laevicaudatans and most cladocerans. The claspers bear a field of special spine‐like setae on the extremity of the ‘palm’; this setal type, previously unrecognized, is unique to Cyclestheria. The palm of the clasper also bears two palps (one very small), as in other conchostracan species (both laevicaudatans and spinicaudatans). The movable finger of the clasper, modified from the thoracopod endopod, bears a row of long setae along its outer extremity, also unique. Cyclestheria exhibits a mixture of characters, some unique and others typical of the Spinicaudata (Conchostraca). Cladoceran clasper types are briefly reviewed. as are the claspers in the Spinicaudata and Laevicaudata (Conchostraca). Morphology of the clasper of Cyclestheria shows typical spinicaudate characters. It is suggested that claspers on the first thoracopods may be a synapomorphy for the Conchostraca and the Cladocera. The possible role of Cyclestheria or a Cyclestheria‐like ancestor in cladoceran phylogeny is briefly discussed in light of recent suggestions (Martin and Cash‐Clark, 1995) of cladoceran monophyly and possible ancestral relationships with this genus. Some possibilities concerning the phylogenetic position of Cyclestheria–either as a sister group to the rest of the Spinicaudata or as a sister group to the Cladocera—are discussed.
This study gives an overview and describes special aspects of the biology, ecology and the life cycle of Cyclestheria hislopi (Baird, 1859). This species is most commonly found in parthenogenically reproducing populations which produce large, directly developing nondiapause eggs. But periodically and under certain environmental conditions, sexually reproducing generations appear and produce diapause eggs. The sexual generations include males and particularly constituted females, which undergo a complete transformation into a special type of ephippium. Cyclestheria is the only known conchostracan species which does not occur in the initial phases of temporary water bodies, but develops in older temporary pools and even in permanent waters. It survives in the presence of effective depredators like fish by hiding within a special self-made mucus capsule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.