a b s t r a c tThe Automotive industry has been developed into a complex and highly automated sector. This level of automation and complexity has led to the establishment of a work environment, where human machine interface and human reliability are now critical factors of performance especially for safety critical tasks. Many different methodologies for performing risk assessment considering human factors are already available in the literature, but they were often developed for other domains (aviation, nuclear and process industry). Their purpose is to support the root cause evaluation and estimate the probability of faulty human actions. The present paper introduces a method to support the evaluation and the choice of a suitable Human Reliability Analysis (HRA) technique for the automotive sector considering the ones proposed from other industrial domains. The Analytic Hierarchy Process (AHP) provides a way of assisting safety managers and risk assessors in the HRA technique selection process. This allows the selected HRA techniques to be evaluated based on relevant criteria for an application in an automotive manufacturing environment. An example of selected HRA techniques in this paper will be demonstrated in a case study. The example can also suggest implications to improve existing industry guidelines, international standards and regulations, which are frequently calling for a wide range of ergonomic factors to be considered in the risk assessment process. Further the case study should show potential benefits to organizations coming from the selection and application of the right HRA technique.
Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the technological advances in three key areas. First is the optical fabrication technique used for constructing next-generation telescope mirrors. Advances in ground-based telescope control and instrumentation comprise the second area of development. This includes active alignment of the laser truss-based Large Binocular Telescope (LBT) prime focus camera, the new MOBI-US modular cross-dispersion spectroscopy unit used at the prime focal plane of the LBT, and topological pupil segment optimization. Lastly, future space telescope concepts and enabling technologies are discussed. Among these, the Nautilus space observatory requires challenging alignment of segmented multi-order diffractive elements. The OASIS terahertz space telescope presents unique challenges for characterizing the inflatable primary mirror, and the Hyperion space telescope pushes the limits of high spectral resolution, far-UV spectroscopy. The Coronagraphic Debris and Exoplanet Exploring Pioneer (CDEEP) is a Small Satellite (SmallSat) mission concept for high-contrast imaging of circumstellar disks and exoplanets using vector vortex coronagraph. These advances in optical engineering technologies will help mankind to probe, explore, and understand the scientific beauty of our universe.
The 2020 Decadal Survey on Astronomy and Astrophysics endorsed space-based high contrast imaging for the detection and characterization of habitable exoplanets as a key priority for the upcoming decade. To advance the maturity of starlight suppression techniques in a space-like environment, we are developing the Space Coronagraph Optical Bench (SCoOB) at the University of Arizona, a new thermal vacuum (TVAC) testbed based on the Coronagraphic Debris Exoplanet Exploring Payload (CDEEP), a SmallSat mission concept for high contrast imaging of circumstellar disks in scattered light. When completed, the testbed will combine a vector vortex coronagraph (VVC) with a Kilo-C microelectromechanical systems (MEMS) deformable mirror from Boston Micromachines Corp (BMC) and a self-coherent camera (SCC) with a goal of raw contrast surpassing 10 −8 at visible wavelengths. In this proceedings, we report on our wavefront sensing and control efforts on this testbed in air, including the as-built performance of the optical system and the implementation of algorithms for focalplane wavefront control and digging dark holes (regions of high contrast in the focal plane) using electric field conjugation (EFC) and related algorithms.
NASA's next flagship mission, the Nancy Grace Roman Space Telescope, is a 2.4-meter observatory set to launch no later than May 2027. Roman features two instruments: the Wide Field Imager and the Coronagraph Instrument. Roman's Coronagraph is a Technology Demonstration that will push the current capabilities of direct imaging to smaller contrast ratios (∼10 −9 ) and inner-working angles (3 λ/D). In order to achieve this high precision, Roman Coronagraph data must be calibrated to remove as many potential sources of error as possible. Here we present a detailed overview of the Nancy Grace Roman Space Telescope Coronagraph Instrument Observation Calibration Plan including identifying potential sources of error and how they will be mitigated via on-sky calibrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.