This study examined the effect of leptin on renal ouabain-resistant Na(+)-ATPase, which drives the reabsorption of about 10% of sodium transported in the proximal tubule. Chronic leptin administration (0.25 mg/kg s.c. twice daily for seven days) increased Na(+)-ATPase activity by 62.9%. This effect was prevented by the coadministration of superoxide dismutase mimetic, tempol, or the NADPH oxidase inhibitor, apocynin (2 mM in the drinking water). Acutely administered NO donors decreased Na(+)-ATPase activity. This effect was abolished by soluble guanylate cyclase inhibitor, ODQ, but not by protein kinase G inhibitors. Exogenous cGMP reduced Na(+)-ATPase activity, but its synthetic analogues, 8-bromo-cGMP and 8-pCPT-cGMP, were ineffective. The inhibitory effect of NO donors and cGMP was abolished by EHNA, an inhibitor of cGMP-stimulated phosphodiesterase (PDE2). Exogenous cAMP analogue and dibutyryl-cAMP increased Na(+)-ATPase activity and abolished the inhibitory effect of cGMP. Finally, the administration of superoxide-generating mixture (xanthine oxidase+hypoxanthine) increased Na(+)-ATPase activity. The results suggest that nitric oxide decreases renal Na(+)-ATPase activity by stimulating cGMP, which in turn activates PDE2 and decreases cAMP concentration. Increased production of reactive oxygen species may lead to the elevation of Na(+)-ATPase activity by scavenging NO and limiting its inhibitory effect. Chronic hyperleptinemia is associated with increased Na(+)-ATPase activity due to excessive oxidative stress.
1. Recent studies suggest that leptin, a peptide hormone secreted by white adipose tissue, is involved in the pathogenesis of arterial hypertension, in part by regulating renal sodium handling. Previously, we have demonstrated that in normal rats leptin has a time-dependent effect on renal Na(+)/K(+)-ATPase that drives tubular sodium reabsorption. Short-term leptin infusion results in a transient decrease in Na(+)/K(+)-ATPase activity, whereas prolonged administration stimulates the enzyme. 2. In the present study, we investigated whether these acute effects of leptin are preserved in rats with experimentally induced chronic hyperleptinaemia. 3. Hyperleptinaemia was induced by administration of exogenous leptin (0.25 mg/kg twice daily, s.c., for 7 days). Acute effects of leptin in anaesthetized control (normoleptinaemic) and hyperleptinaemic animals was investigated. Leptin was infused into the abdominal aorta proximally to the renal arteries for 0.5, 1, 2 or 3 h. 4. Leptin (1 microg/min per kg) had a time-dependent effect on renal Na(+)/K(+)-ATPase in both the control and hyperleptinaemic groups. The inhibitory effect observed after 0.5 h infusion was impaired in the hyperleptinaemic group. However, in both groups this effect was abolished by the Janus kinase inhibitor tyrphostin AG490 (100 nmol/min per kg), as well as by the phosphatidylinositol 3-kinase inhibitors wortmannin (10 nmol/min per kg) and LY294002 (1 micromol/min per kg). 5. The stimulatory effect of leptin on Na(+)/K(+)-ATPase activity was observed after 3 h of infusion and was of similar magnitude in control and hyperleptinaemic groups. In the control group, the stimulatory effect of leptin was abolished by the NADPH oxidase inhibitor apocynin (1 micromol/min per kg), the H(2)O(2) scavenger catalase (1 mg/min per kg) and the extracellular signal-regulated kinase (ERK) inhibitor PD98059 (100 nmol/min per kg). In contrast, in the hyperleptinaemic group, the stimulatory effect of leptin was abolished by the cGMP analogue 8-bromo-cGMP (100 nmol/min per kg) and by the superoxide dismutase mimetic tempol (100 micromol/min per kg) but was not affected by catalase or PD98059. 6. Leptin increased urinary H(2)O(2) excretion and ERK phosphorylation in the renal tissue only in the control group. 7. The results suggest that the acute stimulatory effect of leptin on renal Na(+)/K(+)-ATPase is mediated by divergent mechanisms depending on the chronic leptin level (i.e. by H(2)O(2)-dependent stimulation of ERK in normoleptinaemic animals and by superoxide-dependent impairment of the nitric oxide-cGMP pathway in hyperleptinaemic rats).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.