Diindolylmethane (DIM) and its derivatives have recently been in the focus of interest due to their significant biological activities, specifically in cancer prevention and therapy. Molecular targets of DIM have been identified, e.g., the immunostimulatory G protein-coupled receptor GPR84. However, most of the reported and investigated DIM derivatives are symmetrical because general methods for obtaining unsymmetrical DIMs have been lacking. To optimize the interaction of DIM derivatives with their protein targets, unsymmetrical substitution is required. In the present study we developed a new, mild and efficient access to unsymmetrically substituted 3,3'-DIMs by reaction of (3-indolylmethyl)trimethylammonium iodides with a wide range of substituted indole derivatives. 7-Azaindole also led to the 3,3'-connected DIM analogue, while 4- and 5-azaindoles reacted at the N1-nitrogen atom as confirmed by X-ray crystallography. The reactions were performed in water without the requirement of a catalyst or other additives. Wide substrate scope, operational simplicity, environmentally benign workup, and high yields are further advantages of the new method. The synthetic protocol proved to be suitable for upscaling to yield gram amounts for pharmacological studies. This procedure will allow the preparation of a broad range of novel, unsymmetrical DIM derivatives to exploit their potential as novel drugs.
Neuropilin-1 is transmembrane protein with soluble isoforms. It plays a pivotal role in both physiological and pathological processes. NRP-1 is involved in the immune response, formation of neuronal circuits, angiogenesis, survival and migration of cells. The specific SPRI biosensor for the determination of neuropilin-1 was constructed using mouse monoclonal antibody that captures unbound NRP-1 form body fluids. The biosensor exhibits linearity of the analytical signal between 0.01 and 2.5 ng/mL, average precision value 4.7% and recovery between 97% and 104%. The detection limit is 0.011 ng/mL, and the limit of quantification is 0.038 ng/mL. The biosensor was validated by parallel determination of NRP-1 in serum and saliva samples using the ELISA test, with good agreement of the results.
Research on the markers of immunoregulatory response in multiple sclerosis (MS) is still of great importance. The aim of our study was the evaluation of leptin, fibronectin, and UCHL1 concentrations as potential biomarkers of a relapsing–remitting type of MS (RRMS). Surface Plasmon Resonance Imaging (SPRI) biosensors were used for the evaluation of proteins concentrations in 100 RRMS patients and 46 healthy volunteers. Plasma leptin, fibronectin, and UCHL1 concentrations were significantly higher in RRMS patients compared to the control group (p < 0.001, respectively). UCHL1 concentration evaluation revealed the highest diagnostic sensitivity (100%) and negative predictive value (100%) in differentiating MS patients from healthy individuals. There was no significant difference in the UCHL1 concentrations depending on the patient’s sex, the presence of relapse within the last 24 months, and the EDSS value (p > 0.05, respectively). In RRMS patients UCHL1 concentration positively correlated with fibronectin levels (r = 0.3928; p < 0.001). In the current cohort of patients plasma UCHL1 concentration was independent of the time of MS relapse and the severity of neurological symptoms. Thus current study may indicate that plasma UCHL1, besides leptin and fibronectin, also could be a promising high-sensitive potential biomarker of relapsing–remitting type of MS. However, these results should be validated with a larger group of patients, taking into account neuroimaging and cerebrospinal fluid analysis data, and by comparing them to patients with other neurological diseases as a control group.
Neurodegenerations are diseases of the present and the future. As the human population grows, the number of people suffering from neurodegenerative diseases will increase. Neurodegenerations diseases are Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, spinocerebellar ataxia, spinal muscular ataxia), sporadic (amyotrophic lateral sclerosis) or infectious (prion disease). Nerve cells (neurons) can’t regenerate and therefore die under the influence of pathological factors. Neurodegenerations diseases can be serious or life-threatening. It depends on the type. Drags and treatments may help improve symptoms, relieve pain, and increase mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.