It is unknown whether fibrosis‐associated microRNAs: miR‐21, miR‐26, miR‐29, miR‐30 and miR‐133a are linked to cardiovascular (CV) outcome. The study evaluated the levels of extracellular matrix (ECM) fibrosis and the prevalence of particular microRNAs in patients with dilated cardiomyopathy (DCM) to investigate any correlation with CV events. Methods: Seventy DCM patients (48 ± 12 years, EF 24.4 ± 7.4%) underwent right ventricular biopsy. The control group was comprised of 7 patients with CAD who underwent CABG and intraoperative biopsy. MicroRNAs were measured in blood and myocardial tissue via qPCR. The end‐point was a combination of CV death and urgent HF hospitalization at the end of 12 months. There were differential levels of circulating and myocardial miR‐26 and miR‐29 as well as myocardial miR‐133a when the DCM and CABG groups were compared. Corresponding circulating and myocardial microRNAs did not correlate with one another. There was no correlation between microRNA and ECM fibrosis. By the end of the 12‐month period of the study, CV death had occurred in 6 patients, and a further 19 patients required urgent HF hospitalization. None of the circulating microRNAs was a predictor of the combined end‐point; however, myocardial miR‐133a was an independent predictor in unadjusted models (HR 1.53; 95% CI 1.14‐2.05; P < .004) and adjusted models (HR 1.57; 95% CI 1.14‐2.17; P < .005). The best cut‐off value for the miR‐133a level for the prediction of the combined end‐point was 0.74 ΔCq, with an AUC of 0.67. The absence of a correlation between the corresponding circulating and myocardial microRNAs calls into question their cellular source. This study sheds new light on the role of microRNAs in ECM fibrosis in DCM, which warrants further exploration.
Background: BMI is a strong indicator of complications from type I diabetes, especially under intensive treatment. Methods: We have genotyped 435 type 1 diabetics using Illumina Infinium Omni Express Exome-8 v1.4 arrays and performed mitoGWAS on BMI. We identified additive interactions between mitochondrial and nuclear variants in genes associated with mitochondrial functioning MitoCarta2.0 and confirmed and refined the results on external cohorts: the Framingham Heart Study (FHS) and GTEx data. Linear mixed model analysis was performed using the GENESIS package in R/Bioconductor. Results: We find a borderline significant association between the mitochondrial variant rs28357980, localized to MT-ND2, and BMI (β = − 0.69, p = 0.056). This BMI association was confirmed on 1889 patients from FHS cohort (β = − 0.312, p = 0.047). Next, we searched for additive interactions between mitochondrial and nuclear variants. MT-ND2 variants interacted with variants in the genes SIRT3, ATP5B, CYCS, TFB2M and POLRMT. TFB2M is a mitochondrial transcription factor and together with TFAM creates a transcription promoter complex for the mitochondrial polymerase POLRMT. We have found an interaction between rs3021088 in MT-ND2 and rs6701836 in TFB2M leading to BMI decrease (inter_pval = 0.0241), while interaction of rs3021088 in MT-ND2 and rs41542013 in POLRMT led to BMI increase (inter_pval = 0.0004). The influence of these interactions on BMI was confirmed in external cohorts. Conclusions: Here, we have shown that variants in the mitochondrial genome as well as additive interactions between mitochondrial and nuclear SNPs influence BMI in T1DM and general cohorts.
Whilst the survival rates of childhood acute lymphoblastic leukemia (ALL) have increased remarkably over the last decades, the therapy resistance and toxicity are still the major causes of treatment failure. It was shown that overexpression of heme oxygenase-1 (HO-1) promotes proliferation and chemoresistance of cancer cells. In humans, the HO-1 gene (HMOX1) expression is modulated by two polymorphisms in the promoter region: (GT)n-length polymorphism and single-nucleotide polymorphism (SNP) A(−413)T, with short GT repeat sequences and 413-A variants linked to an increased HO-1 inducibility. We found that the short alleles are significantly more frequent in ALL patients in comparison to the control group, and that their presence may be associated with a higher risk of treatment failure, reflecting the role of HO-1 in chemoresistance. We also observed that the presence of short alleles may predispose to develop chemotherapy-induced neutropenia. In case of SNP, the 413-T variant co-segregated with short or long alleles, while 413-A almost selectively co-segregated with long alleles, hence it is not possible to determine if SNPs are actually of phenotypic significance. Our results suggest that HO-1 can be a potential target to overcome the treatment failure in ALL patients.
ObjectiveNegative pressure wound therapy (NPWT) has been used to treat diabetic foot ulcerations (DFUs). Its action on the molecular level, however, is only partially understood. Some earlier data suggested NPWT may be mediated through modification of local gene expression. As methylation is a key epigenetic regulatory mechanism of gene expression, we assessed the effect of NPWT on its profile in patients with type 2 diabetes (T2DM) and neuropathic non-infected DFUs.MethodsOf 36 included patients, 23 were assigned to NPWT and 13 to standard therapy. Due to ethical concerns, the assignment was non-randomized and based on wound characteristics. Tissue samples were obtained before and 8 ± 1 days after therapy initiation. DNA methylation patterns were checked by Illumina Methylation EPIC kit.ResultsIn terms of clinical characteristics, the groups presented typical features of T2DM; however, the NPWT group had significantly greater wound area: 16.8 cm2 vs 1.4 cm2 (P = 0.0003). Initially only one region at chromosome 5 was differentially methylated. After treatment, 57 differentially methylated genes were found, mainly located on chromosomes 6 (chr6p21) and 20 (chr20p13); they were associated with DNA repair and autocrine signaling via retinoic acid receptor. We performed differential analyses pre treatment and post treatment. The analysis revealed 426 differentially methylated regions in the NPWT group, but none in the control group. The enrichment analysis showed 11 processes significantly associated with NPWT, of which 4 were linked with complement system activation. All but one were hypermethylated after NPWT.ConclusionThe NPWT effect on DFUs may be mediated through epigenetic changes resulting in the inhibition of complement system activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.