ObjectiveTo characterise the clinical features of patients admitted to hospital with coronavirus disease 2019 (covid-19) in the United Kingdom during the growth phase of the first wave of this outbreak who were enrolled in the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) World Health Organization (WHO) Clinical Characterisation Protocol UK (CCP-UK) study, and to explore risk factors associated with mortality in hospital.DesignProspective observational cohort study with rapid data gathering and near real time analysis.Setting208 acute care hospitals in England, Wales, and Scotland between 6 February and 19 April 2020. A case report form developed by ISARIC and WHO was used to collect clinical data. A minimal follow-up time of two weeks (to 3 May 2020) allowed most patients to complete their hospital admission.Participants20 133 hospital inpatients with covid-19.Main outcome measuresAdmission to critical care (high dependency unit or intensive care unit) and mortality in hospital.ResultsThe median age of patients admitted to hospital with covid-19, or with a diagnosis of covid-19 made in hospital, was 73 years (interquartile range 58-82, range 0-104). More men were admitted than women (men 60%, n=12 068; women 40%, n=8065). The median duration of symptoms before admission was 4 days (interquartile range 1-8). The commonest comorbidities were chronic cardiac disease (31%, 5469/17 702), uncomplicated diabetes (21%, 3650/17 599), non-asthmatic chronic pulmonary disease (18%, 3128/17 634), and chronic kidney disease (16%, 2830/17 506); 23% (4161/18 525) had no reported major comorbidity. Overall, 41% (8199/20 133) of patients were discharged alive, 26% (5165/20 133) died, and 34% (6769/20 133) continued to receive care at the reporting date. 17% (3001/18 183) required admission to high dependency or intensive care units; of these, 28% (826/3001) were discharged alive, 32% (958/3001) died, and 41% (1217/3001) continued to receive care at the reporting date. Of those receiving mechanical ventilation, 17% (276/1658) were discharged alive, 37% (618/1658) died, and 46% (764/1658) remained in hospital. Increasing age, male sex, and comorbidities including chronic cardiac disease, non-asthmatic chronic pulmonary disease, chronic kidney disease, liver disease and obesity were associated with higher mortality in hospital.ConclusionsISARIC WHO CCP-UK is a large prospective cohort study of patients in hospital with covid-19. The study continues to enrol at the time of this report. In study participants, mortality was high, independent risk factors were increasing age, male sex, and chronic comorbidity, including obesity. This study has shown the importance of pandemic preparedness and the need to maintain readiness to launch research studies in response to outbreaks.Study registrationISRCTN66726260.
ObjectiveTo develop and validate a pragmatic risk score to predict mortality in patients admitted to hospital with coronavirus disease 2019 (covid-19).DesignProspective observational cohort study.SettingInternational Severe Acute Respiratory and emerging Infections Consortium (ISARIC) World Health Organization (WHO) Clinical Characterisation Protocol UK (CCP-UK) study (performed by the ISARIC Coronavirus Clinical Characterisation Consortium—ISARIC-4C) in 260 hospitals across England, Scotland, and Wales. Model training was performed on a cohort of patients recruited between 6 February and 20 May 2020, with validation conducted on a second cohort of patients recruited after model development between 21 May and 29 June 2020.ParticipantsAdults (age ≥18 years) admitted to hospital with covid-19 at least four weeks before final data extraction.Main outcome measureIn-hospital mortality.Results35 463 patients were included in the derivation dataset (mortality rate 32.2%) and 22 361 in the validation dataset (mortality rate 30.1%). The final 4C Mortality Score included eight variables readily available at initial hospital assessment: age, sex, number of comorbidities, respiratory rate, peripheral oxygen saturation, level of consciousness, urea level, and C reactive protein (score range 0-21 points). The 4C Score showed high discrimination for mortality (derivation cohort: area under the receiver operating characteristic curve 0.79, 95% confidence interval 0.78 to 0.79; validation cohort: 0.77, 0.76 to 0.77) with excellent calibration (validation: calibration-in-the-large=0, slope=1.0). Patients with a score of at least 15 (n=4158, 19%) had a 62% mortality (positive predictive value 62%) compared with 1% mortality for those with a score of 3 or less (n=1650, 7%; negative predictive value 99%). Discriminatory performance was higher than 15 pre-existing risk stratification scores (area under the receiver operating characteristic curve range 0.61-0.76), with scores developed in other covid-19 cohorts often performing poorly (range 0.63-0.73).ConclusionsAn easy-to-use risk stratification score has been developed and validated based on commonly available parameters at hospital presentation. The 4C Mortality Score outperformed existing scores, showed utility to directly inform clinical decision making, and can be used to stratify patients admitted to hospital with covid-19 into different management groups. The score should be further validated to determine its applicability in other populations.Study registrationISRCTN66726260
ObjectiveTo characterise the clinical features of children and young people admitted to hospital with laboratory confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the UK and explore factors associated with admission to critical care, mortality, and development of multisystem inflammatory syndrome in children and adolescents temporarily related to coronavirus disease 2019 (covid-19) (MIS-C).DesignProspective observational cohort study with rapid data gathering and near real time analysis.Setting260 hospitals in England, Wales, and Scotland between 17 January and 3 July 2020, with a minimum follow-up time of two weeks (to 17 July 2020).Participants651 children and young people aged less than 19 years admitted to 138 hospitals and enrolled into the International Severe Acute Respiratory and emergency Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK study with laboratory confirmed SARS-CoV-2.Main outcome measuresAdmission to critical care (high dependency or intensive care), in-hospital mortality, or meeting the WHO preliminary case definition for MIS-C.ResultsMedian age was 4.6 (interquartile range 0.3-13.7) years, 35% (225/651) were under 12 months old, and 56% (367/650) were male. 57% (330/576) were white, 12% (67/576) South Asian, and 10% (56/576) black. 42% (276/651) had at least one recorded comorbidity. A systemic mucocutaneous-enteric cluster of symptoms was identified, which encompassed the symptoms for the WHO MIS-C criteria. 18% (116/632) of children were admitted to critical care. On multivariable analysis, this was associated with age under 1 month (odds ratio 3.21, 95% confidence interval 1.36 to 7.66; P=0.008), age 10-14 years (3.23, 1.55 to 6.99; P=0.002), and black ethnicity (2.82, 1.41 to 5.57; P=0.003). Six (1%) of 627 patients died in hospital, all of whom had profound comorbidity. 11% (52/456) met the WHO MIS-C criteria, with the first patient developing symptoms in mid-March. Children meeting MIS-C criteria were older (median age 10.7 (8.3-14.1) v 1.6 (0.2-12.9) years; P<0.001) and more likely to be of non-white ethnicity (64% (29/45) v 42% (148/355); P=0.004). Children with MIS-C were five times more likely to be admitted to critical care (73% (38/52) v 15% (62/404); P<0.001). In addition to the WHO criteria, children with MIS-C were more likely to present with fatigue (51% (24/47) v 28% (86/302); P=0.004), headache (34% (16/47) v 10% (26/263); P<0.001), myalgia (34% (15/44) v 8% (21/270); P<0.001), sore throat (30% (14/47) v (12% (34/284); P=0.003), and lymphadenopathy (20% (9/46) v 3% (10/318); P<0.001) and to have a platelet count of less than 150 × 109/L (32% (16/50) v 11% (38/348); P<0.001) than children who did not have MIS-C. No deaths occurred in the MIS-C group.ConclusionsChildren and young people have less severe acute covid-19 than adults. A systemic mucocutaneous-enteric symptom cluster was also identified in acute cases that shares features with MIS-C. This study provides additional evidence for refining the WHO MIS-C preliminary case definition. Children meeting the MIS-C criteria have different demographic and clinical features depending on whether they have acute SARS-CoV-2 infection (polymerase chain reaction positive) or are post-acute (antibody positive).Study registrationISRCTN66726260.
Objective To derive and validate a risk prediction algorithm to estimate hospital admission and mortality outcomes from coronavirus disease 2019 (covid-19) in adults. Design Population based cohort study. Setting and participants QResearch database, comprising 1205 general practices in England with linkage to covid-19 test results, Hospital Episode Statistics, and death registry data. 6.08 million adults aged 19-100 years were included in the derivation dataset and 2.17 million in the validation dataset. The derivation and first validation cohort period was 24 January 2020 to 30 April 2020. The second temporal validation cohort covered the period 1 May 2020 to 30 June 2020. Main outcome measures The primary outcome was time to death from covid-19, defined as death due to confirmed or suspected covid-19 as per the death certification or death occurring in a person with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the period 24 January to 30 April 2020. The secondary outcome was time to hospital admission with confirmed SARS-CoV-2 infection. Models were fitted in the derivation cohort to derive risk equations using a range of predictor variables. Performance, including measures of discrimination and calibration, was evaluated in each validation time period. Results 4384 deaths from covid-19 occurred in the derivation cohort during follow-up and 1722 in the first validation cohort period and 621 in the second validation cohort period. The final risk algorithms included age, ethnicity, deprivation, body mass index, and a range of comorbidities. The algorithm had good calibration in the first validation cohort. For deaths from covid-19 in men, it explained 73.1% (95% confidence interval 71.9% to 74.3%) of the variation in time to death (R 2 ); the D statistic was 3.37 (95% confidence interval 3.27 to 3.47), and Harrell’s C was 0.928 (0.919 to 0.938). Similar results were obtained for women, for both outcomes, and in both time periods. In the top 5% of patients with the highest predicted risks of death, the sensitivity for identifying deaths within 97 days was 75.7%. People in the top 20% of predicted risk of death accounted for 94% of all deaths from covid-19. Conclusion The QCOVID population based risk algorithm performed well, showing very high levels of discrimination for deaths and hospital admissions due to covid-19. The absolute risks presented, however, will change over time in line with the prevailing SARS-C0V-2 infection rate and the extent of social distancing measures in place, so they should be interpreted with caution. The model can be recalibrated for different time periods, however, and has the potential to be dynamically updated as the pandemic evolves.
SummaryIterative liver injury results in progressive fibrosis disrupting hepatic architecture, regeneration potential, and liver function. Hepatic stellate cells (HSCs) are a major source of pathological matrix during fibrosis and are thought to be a functionally homogeneous population. Here, we use single-cell RNA sequencing to deconvolve the hepatic mesenchyme in healthy and fibrotic mouse liver, revealing spatial zonation of HSCs across the hepatic lobule. Furthermore, we show that HSCs partition into topographically diametric lobule regions, designated portal vein-associated HSCs (PaHSCs) and central vein-associated HSCs (CaHSCs). Importantly we uncover functional zonation, identifying CaHSCs as the dominant pathogenic collagen-producing cells in a mouse model of centrilobular fibrosis. Finally, we identify LPAR1 as a therapeutic target on collagen-producing CaHSCs, demonstrating that blockade of LPAR1 inhibits liver fibrosis in a rodent NASH model. Taken together, our work illustrates the power of single-cell transcriptomics to resolve the key collagen-producing cells driving liver fibrosis with high precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.