Melanin pigments have various properties that are of technological interest including photo‐ and radiation protection, rich coloration, and electronic functions. Nevertheless, laboratory‐based synthesis of melanin and melanin‐like materials with morphologies and chemical structures that are specifically optimized for these applications, is currently not possible. Here, melanin‐like materials that are produced by enzymatic oxidation of a supramolecular tripeptide structures that are rich in tyrosine and have a 1D morphology are demonstrated, that are retained during the oxidation process while conducting tracks form through oxidative tyrosine crosslinking. Specifically, a minimalistic self‐assembling peptide, Lys–Tyr–Tyr (KYY) with strong propensity to form supramolecular fibers, is utilized. Analysis by Raman spectroscopy shows that the tyrosines are pre‐organized inside these fibers and, upon enzymatic oxidation, result in connected catechols. These form 1D conducting tracks along the length of the fiber, which gives rise to a level of internal disorder, but retention of the fiber morphology. This results in highly conductive structures demonstrated to be dominated by proton conduction. This work demonstrates the ability to control oxidation but retain a well‐defined fibrous morphology that does not have a known equivalent in biology, and demonstrate exceptional conductivity that is enhanced by enzymatic oxidation.
Addition of complementary DNA induces nanoparticle assembly and SERS response without requirement for further preanalytical steps.
No abstract
This version is available at https://strathprints.strath.ac.uk/57367/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.Journal Name Surfaced enhanced Raman scattering (SERS) can discriminate between metal complexes due to the characteristic "spectral fingerprints" obtained. As a result, SERS has the potential to develop relatively simple and sensitive methods of detecting and quantifying a range of metal ions in solution. This could be beneficial for the environmental monitoring of potentially toxic metals (PTMs). Here, salen was used as a ligand to form complexes of Ni(II), Cu(II), Mn(II) and Co(II) in solution. The SERS spectra showed 10 characteristic spectral differences specific to each metal complex, thus allowing the identification of each of these metal ions. This method allows a number of metal ions to be detected using the same ligand and an identical preparation procedure. The limit of detection (LOD) was determined for each metal ion, and it was found that Ni(II), Cu(II) and Mn(II) could be detected below the WHO's recommended limits in drinking water at 1, 2 and 2 µg L -1 , respectively. Co(II) was found to have an LOD of 20 µg L -1 , however 15 no limit has been set for this ion by the WHO as the concentration of Co(II) in drinking water is generally <1-2 g L -1 . A contaminated water sample was also analysed where Mn(II) was detected at a level of 800 µg L -1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.