Task mapping is an important issue in MPSoC design. Most recent mapping algorithms perform them at design time, an approach known as static mapping. Nonetheless, applications running in MPSoCs may execute a varying number of simultaneous tasks. In some cases, applications may be defined only after system design, enforcing a scenario that requires the use of dynamic task mapping. Static mappings have as main advantage the global view of the system, while dynamic mappings normally provide a local view, which considers only the neighborhood of the mapping task. This work aims to evaluate the pros and cons of static and dynamic mapping solutions. Due to the global system view, it is expected that static mapping algorithms achieve superior performance (w.r.t. latency, congestion, energy consumption). As dynamic scenarios are a trend in present MPSoC designs, the cost of dynamic mapping algorithms must be known, and directions to improve the quality of such algorithms should be provided without increasing execution time. This quantitative comparison between static and dynamic mapping algorithms is the main contribution of this work.
Building fully synchronous VLSI circuits is becoming less viable as circuit geometries evolve. However, before the adoption of purely asynchronous strategies in VLSI design, globally asynchronous, locally synchronous (GALS) design approaches should take over. The design of circuits using complex field programmable components like state of the art FPGAs follows this same trend. In GALS design, a critical step is the definition of asynchronous interfaces between synchronous regions. This paper proposes SCAFFI, a new asynchronous interface to interconnect modules inside FPGAs. The interface is based on clock stretching techniques to avoid metastability. Differently from other interfaces, it can use both logic levels for stretching and do not require the use of arbiters. Also, compactness of the implementation is enhanced by the use of dedicated FPGA hard macros. A GALS version implementation of an RSA cryptography core demonstrates the use of SCAFFI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.