Avocado consumption and trade are increasing worldwide, with North America and Europe being the main importing regions. Spain is the major European avocado producer (90% of the production), yet it only supplies 10% of the market. Consequently, more than 90% of the avocados consumed in Europe are imported from overseas, mainly from Chile and Peru. In this work, the Life Cycle Assessment (LCA) impact associated with the transport of two avocado supply chains (short (Spanish) and long (Chilean)) and the effect of the fruit origin and distance of both chains on primary and secondary metabolites from harvest to edible ripeness were evaluated using a gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to diode array detection (LC-DAD) based metabolite analysis. The LCA transport impact of the fresh supply chain from production centers in Chile (Quillota) and Spain (Malaga), and then the distribution to several cities in Europe, suggested road export from Spain to European capitals to have the lowest impact (0.14 to 0.22 kg CO2 eq/kg of avocado). When export from Chile was considered, the option of oceanic freight to European ports closer to final destinations was clearly a better option (0.21 to 0.26 kg CO2 eq/kg) than via the Algeciras port in Spain followed by road transport to final destinations in European capitals (0.34 to 0.43 kg CO2 eq/kg), although the situation could be somewhat different if the avocados are transported from the destination ports in northern Europe to long-distance capitals in other European countries. Fruit origin had a significant impact on avocado primary and secondary metabolites. The conditions of the supply chain itself (10 d in cold storage in regular conditions vs. 30 d cold storage + controlled atmosphere conditions) largely influence the fate of some metabolites that certainly affect the pool of metabolites at edible ripeness. The long-assumed hypothesis that the longer the supply chain the more negative impact on nutritional and functional compounds might not hold in this case, as long as transport conditions are adequate in terms of temperature, atmosphere conditions, and time considering distance from origin to destination.
As it was previously reported, black spot development in the skin of Hass avocado has been related to a decreased antioxidant defense system. The aim of this study was to investigate the effect of different postharvest storage conditions on controlling black spot development targeting their effect on the antioxidant system (non-enzymatic and enzymatic) of the skin. Four postharvest treatments (T1: regular air storage (RA) at 5 °C for 40 d; T2: controlled atmosphere storage (CA) of 4 kPa O2 and 6 kPa CO2 at 5 °C for 40 d; T3: 10 d RA + 30 d CA and T4: 5 µM methyl jasmonate (MeJA) for 30 s + 10 RA + 30 d CA) were tested on controlling black spot incidence in fruit from six orchards from different agroclimatic zones and harvests. Then, on two selected orchards and harvests, the evolution of total phenolics (TPC), antioxidant capacity (AC) and antioxidant enzymes (catalase (CAT), polyphenol oxidase (PPO), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia lyase (PAL)) was monitored. Results revealed that incidence of black spot disorder was not associated to an agroclimatic zone and harvest stage. Immediate application of CA (T2) controlled black spot development during prolonged storage (40 d) and under these conditions TPC content remained higher compared to the other treatments. No clear role of CAT, PPO, SOD, POD and PAL on controlling black spot was observed. The results obtained are of value for the Hass avocado supply chain since a clear performance of CA was evidenced that will result in reduction of postharvest losses associated to this problem.
The classification of grapevine cultivars into isohydric and anisohydric categories depends on their ability to close stomata under conditions of low soil water availability or high atmospheric demand. This study aimed to compare the responses of Grenache, classified as isohydric, and Cabernet Sauvignon, classified as anisohydric, both grafted onto Richter 110 rootstock, and subjected to severe drought stress. Three cycles of drought stress were applied, followed by watering, while a well-watered treatment served as the control. Stomatal conductance and stem water potential were measured at predawn and midday during the drought cycles, and primary metabolites were analyzed in leaves and roots using gas chromatography. We found that Grenache had significantly higher stomatal conductance than Cabernet Sauvignon under both well-watered and water-stressed conditions. There were no significant differences in stem water potential between the two varieties, but the control treatment maintained a higher stem water potential at predawn and midday for both varieties. Primary metabolite analysis showed that both varieties accumulated sugars and polyols in their leaves and roots under drought stress, while organic acids were more abundant in leaves than in roots. Overall, the results suggest that the hydric behavior of grapevines depends on the intensity and duration of drought stress. In this study, both varieties exhibited near-isohydric behavior by regulating stomatal closure under drought stress. The metabolites identified in this study may serve as potential biomarkers of water drought stress in Grenache and Cabernet Sauvignon grapevines under the conditions of this experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.