Mangroves are disappearing rapidly worldwide despite their well documented biodiversity and the ecosystem services they provide. Failure to link ecological processes and their societal benefits has favored highly destructive aquaculture and tourism developments that threaten mangroves and result in costly ''externalities.'' Specifically, the potentially irreparable damage to fisheries because of mangrove loss has been belittled and is greatly underestimated. Here, we show that, in the Gulf of California, fisheries landings are positively related to the local abundance of mangroves and, in particular, to the productive area in the mangrove-water fringe that is used as nursery and/or feeding grounds by many commercial species. Mangrove-related fish and crab species account for 32% of the small-scale fisheries landings in the region. The annual economic median value of these fisheries is US $37,500 per hectare of mangrove fringe, falling within the higher end of values previously calculated worldwide for all mangrove services together. The ten-year discounted value of one hectare of fringe is >300 times the official cost set by the Mexican government. The destruction of mangroves has a strong economic impact on local fishing communities and on food production in the region. Our valuation of the services provided by mangroves may prove useful in making appropriate decisions for a more efficient and sustainable use of wetlands.discounted values ͉ economic benefits ͉ ecosystem services ͉ small-scale fisheries ͉ Rhizophora fringe forest
No-take marine reserves are effective management tools used to restore fish biomass and community structure in areas depleted by overfishing. Cabo Pulmo National Park (CPNP) was created in 1995 and is the only well enforced no-take area in the Gulf of California, Mexico, mostly because of widespread support from the local community. In 1999, four years after the establishment of the reserve, there were no significant differences in fish biomass between CPNP (0.75 t ha−1 on average) and other marine protected areas or open access areas in the Gulf of California. By 2009, total fish biomass at CPNP had increased to 4.24 t ha−1 (absolute biomass increase of 3.49 t ha−1, or 463%), and the biomass of top predators and carnivores increased by 11 and 4 times, respectively. However, fish biomass did not change significantly in other marine protected areas or open access areas over the same time period. The absolute increase in fish biomass at CPNP within a decade is the largest measured in a marine reserve worldwide, and it is likely due to a combination of social (strong community leadership, social cohesion, effective enforcement) and ecological factors. The recovery of fish biomass inside CPNP has resulted in significant economic benefits, indicating that community-managed marine reserves are a viable solution to unsustainable coastal development and fisheries collapse in the Gulf of California and elsewhere.
In 2000, transgenes were detected in local maize varieties (landraces) in the mountains of Oaxaca, Mexico [Quist, D. & Chapela, I. H. (2001)
Nature
414, 541–543]. This region is part of the Mesoamerican center of origin for maize (
Zea mays
L.), and the genetic diversity that is maintained in open-pollinated landraces is recognized as an important genetic resource of great cultural value. The presence of transgenes in landraces was significant because transgenic maize has never been approved for cultivation in Mexico. Here we provide a systematic survey of the frequency of transgenes in currently grown landraces. We sampled maize seeds from 870 plants in 125 fields and 18 localities in the state of Oaxaca during 2003 and 2004. We then screened 153,746 sampled seeds for the presence of two transgene elements from the 35S promoter of the cauliflower mosaic virus and the nopaline synthase gene (nopaline synthase terminator) from
Agrobacterium tumefaciens
. One or both of these transgene elements are present in all transgenic commercial varieties of maize. No transgenic sequences were detected with highly sensitive PCR-based markers, appropriate positive and negative controls, and duplicate samples for DNA extraction. We conclude that transgenic maize seeds were absent or extremely rare in the sampled fields. This study provides a much-needed preliminary baseline for understanding the biological, socioeconomic, and ethical implications of the inadvertent dispersal of transgenes from the United States and elsewhere to local landraces of maize in Mexico.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.