This paper presents a 40-MHz hybrid CMOS/GaN integrated multiphase dc-dc switched-inductor buck converter with a maximum 20-V input voltage. The half-bridge switches are realized using lateral AlGaN/GaN HEMTs, while the drivers and other circuitry are implemented in standard 180-nm CMOS. The interface between the CMOS and GaN dice is achieved through face-to-face bonding, reducing inductive parasitics for the connection to less than 15 pH. A capacitively coupled level shifter provides the gate drive for the high-side GaN switch using 5-V CMOS devices. The converter demonstrates 76% efficiency for 8:1 V conversion and over 60% efficiency for conversion ratios up to 16:1. Index Terms-Capacitively coupled level shifter, CMOS/GaN face-to-face bonding, gate drive for GaN, integrated voltage regulator (IVR), power electronics.
This paper explores the extent to which a solid-state transmitter can be miniaturized, while still using RF for wireless information transfer and working with power densities and operating voltages comparable to what could be harvested from a living system. A 3.1 nJ/bit pulsed millimeter-wave transmitter, 300 by 300 by 250 in size, designed in 32-nm SOI CMOS, operates on an electric potential of 130 mV and 3.1 nW of dc power. Farfield data transmission at 33 GHz is achieved by supply-switching an LC-oscillator with a duty cycle of . The time interval between pulses carries information on the amount of power harvested by the radio, supporting a data rate of 1 bps. The inductor of the oscillator also acts as an electrically small on-chip antenna, which, combined with millimeter-wave operation, enables the extremely small form factor.Index Terms-Antennas, low power design, monolithic integrated circuits, radio frequency oscillators.
1549-8328
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.