European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft.
The co-occurrence of domestic cats (Felis silvestris catus) and wild felids in rural landscapes can facilitate pathogen transmission. However, in the relatively-isolated regions of southern South America there have been no comprehensive studies to assess disease transmission risks between domestic cats and forest-dwelling wild felids such as guigna (Leopardus guigna). We evaluated hemoplasma infection and the possibility of transmission between domestic cats and guignas by comparing spatial and phylogenetic patterns of pathogen prevalence. Blood/spleen samples were collected from 102 wild guignas and 262 co-occurring rural domestic cats across the entire distribution range of guigna in Chile. Hemoplasma infection was assessed by direct sequencing of the 16S RNA gene. Infection with hemoplasmas was common and geographically widespread across different bioclimatic areas for both species. The most common feline Mycoplasma species in guigna and domestic cats were Candidatus M. haemominutum (CMhm) (15.7% guigna; 10.3% domestic cat) and Mycoplasma haemofelis (Mhf) (9.8% guigna, 6.1% domestic cat). A previously undescribed Mycoplasma sp. sequence was found in two guignas and one cat. Continuous forest-landscapes were associated with higher hemoplasma-prevalence in guignas. Shared hemoplasma nucleotide sequence types between guigna and domestic cats were rare, suggesting that cross-species transmission between guignas and domestic cats may occur, but is probably uncommon. Ectoparasites, which have been linked with hemoplasma transmission, were not found on guignas and were infrequent on domestic cats. Our results suggest that transmission pathways vary among hemoplasma species and, contrary to our predictions, domestic cats did not appear to be the main driver of hemoplasma infection in guignas in these human-dominated landscapes.
Mycoplasma haemocanis is prevalent in the endangered Darwin’s fox (Lycalopex fulvipes) in its main stronghold, Chiloé Island (Chile). The origin of the infection, its dynamics, its presence in other fox populations and the potential consequences for fox health remain unexplored. For 8 years, hemoplasmal DNA was screened and characterized in blood from 82 foxes in Chiloé and two other fox populations and in 250 free-ranging dogs from Chiloé. The prevalence of M. haemocanis in foxes was constant during the study years, and coinfection with “Candidatus Mycoplasma haematoparvum” was confirmed in 30% of the foxes. Both hemoplasma species were detected in the two mainland fox populations and in Chiloé dogs. M. haemocanis was significantly more prevalent and more genetically diverse in foxes than in dogs. Two of the seven M. haemocanis haplotypes identified were shared between these species. Network analyses did not show genetic structure by species (foxes versus dogs), geographic (island versus mainland populations), or temporal (years of study) factors. The probability of infection with M. haemocanis increased with fox age but was not associated with sex, season, or degree of anthropization of individual fox habitats. Some foxes recaptured years apart were infected with the same haplotype in both events, and no hematological alterations were associated with hemoplasma infection, suggesting tolerance to the infection. Altogether, our results indicate that M. haemocanis is enzootic in the Darwin’s fox and that intraspecific transmission is predominant. Nevertheless, such a prevalent pathogen in a threatened species represents a concern that must be considered in conservation actions. IMPORTANCE Mycoplasma haemocanis is enzootic in Darwin’s foxes. There is a higher M. haemocanis genetic diversity and prevalence in foxes than in sympatric dogs, although haplotypes are shared between the two carnivore species. There is an apparent tolerance of Darwin’s foxes to Mycoplasma haemocanis.
BackgroundBovine Viral Diarrhea Virus (BVDV) is the viral agent causing the most important economic losses in livestock throughout the world. Infection of fetuses before their immunological maturity causes the birth of animals persistently infected with BVDV (PI), which are the main source of infection and maintenance of this pathogen in a herd. There is evidence of susceptibility to infection with BVDV in more than 50 species of the order Artiodactyla, and the ability to establish persistent infection in wild cervid species of South America could represent an important risk in control and eradication programs of BVDV in cattle, and a threat to conservation of these wild species. In this study, a serological and virological study was performed to detect BVDV infection in a captive population of non-bovine artiodactyl species in a Chilean zoo with antecedents of abortions whose pathology suggests an infectious etiology.ResultsDetection of neutralizing antibodies against BVDV was performed in 112 artiodactyl animals from a zoo in Chile. Three alpacas (Vicugna pacos), one guanaco (Lama guanicoe) and seven pudús (Pudu puda) resulted seropositive, and the only seronegative pudú was suspected to be persistently infected with BVDV. Then two blood samples nine months apart were analyzed by a viral neutralization test and RT-PCR. Non-cytopathogenic BVDVs were isolated in both samples. A phylogenetic analysis showed that the virus was highly related to BVDV-1b strains circulating among Chilean cattle.ConclusionsThis is the first report of a South American deer persistently infected with Bovine Viral Diarrhea Virus. Further studies are needed to determine the possible role of BVDV as a pathogen in pudús and as a threat to their conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.