BackgroundThe merging of two diverged genomes can result in hybrid offspring that phenotypically differ greatly from both parents. In plants, interspecific hybridization plays important roles in evolution and speciation. In addition, many agricultural and horticultural species are derived from interspecific hybridization. However, the detailed mechanisms responsible for non-additive phenotypic novelty in hybrids remain elusive.ResultsIn an interspecific hybrid between Arabidopsis thaliana and A. lyrata, the vast majority of genes that become upregulated or downregulated relative to the parents originate from A. thaliana. Among all differentially expressed A. thaliana genes, the majority is downregulated in the hybrid. To understand why parental origin affects gene expression in this system, we compare chromatin packing patterns and epigenomic landscapes in the hybrid and parents. We find that the chromatin of A. thaliana, but not that of A. lyrata, becomes more compact in the hybrid. Parental patterns of DNA methylation and H3K27me3 deposition are mostly unaltered in the hybrid, with the exception of higher CHH DNA methylation in transposon-rich regions. However, A. thaliana genes enriched for the H3K27me3 mark are particularly likely to differ in expression between the hybrid and parent.ConclusionsIt has long been suspected that genome-scale properties cause the differential responses of genes from one or the other parent to hybridization. Our work links global chromatin compactness and H3K27me3 histone modification to global differences in gene expression in an interspecific Arabidopsis hybrid.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-017-1281-4) contains supplementary material, which is available to authorized users.
Information and function of a genome are not only decorated with epigenetic marks in the linear DNA sequence but also in their non-random spatial organization in the nucleus. Recent research has revealed that three-dimensional (3D) chromatin organization is highly correlated with the functionality of the genome, contributing to many cellular processes. Driven by the improvements in chromatin conformation capture methods and visualization techniques, the past decade has been an exciting period for the study of plants' 3D genome structures, and our knowledge in this area has been substantially advanced. This Review describes our current understanding of plant chromatin organization and positioning beyond the nucleosomal level, and discusses future directions.
Summary statementHAWAIIAN SKIRT is a regulator of Arabidopsis thaliana microRNA biogenesis and acts in an Fbox-dependent manner. AbstractAs regulators of gene expression in multicellular organisms, microRNAs (miRNAs) are crucial for growth and development. While a plethora of factors involved in their biogenesis and action in Arabidopsis thaliana have been described, these processes and their fine-tuning are not fully understood in plants. Here, we used plants expressing an artificial miRNA target mimic (MIM) to screen for negative regulators of miR156 activity. We identified a new mutant allele of the F-box protein HAWAIIAN SKIRT (HWS; At3G61590), hws-5, as a suppressor of the MIM156-induced developmental and molecular phenotypes. In hws plants, levels of endogenous miRNAs are increased and their mRNA targets decreased. Plants constitutively expressing full-length HWSbut not a truncated version lacking the F-box domain -display morphological and molecular phenotypes resembling those of mutants defective in miRNA biogenesis and activity. In combination with such mutants, hws loses its delayed floral organ abscission ('skirt') phenotype, suggesting epistasis. Also, the overall hws transcriptome profile partially resembles well-known miRNA mutants hyl1-2 and se-3, indicating action in a common pathway. We thus propose HWS as a novel, F-box dependent regulator of miRNA biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.