We report the results of studies of fibre lasers with passive modulators based on light-excited micro-optomechanical resonance structures (micro-oscillators). It is shown that in fibre lasers based on active fibres doped with rare-earth elements (Er, Er/Yb, Yb, Nd), the optomechanical interaction of laser radiation with micro-oscillators of various types (fibre-optic, microvolume) leads to self-oscillations of the characteristics of laser radiation at frequencies of relaxation oscillations and intermode beats synchronised with the frequencies of elastic eigenoscillations of micro-oscillators. It is found that in an ultra-long erbium – ytterbium fibre laser with a nonlinear mirror based on a microcantilever, laser photothermal excitation of the second mode of elastic transverse oscillations of the microcantilever makes it possible to perform passive mode locking exclusively due to Q-switching of the laser cavity. Pulsed lasing with a controlled repetition rate (∼76 kHz), a pulse duration of 2 – 5 μs and an output energy of 0.1 μJ per pulse is implemented. Based on a simplified physical model of the indicated fibre lasers with micro-oscillators, we have developed an approximate mathematical model describing the regimes of passive mode locking of fibre lasers with micro-oscillators that play the role of mirrors with a nonlinear reflection coefficient in the laser cavity. The prospects for the development and application of the considered laser systems are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.