Spectra of individual silicon nanocrystals within porous Si grains are studied by the wide‐field imaging microspectroscopy and their ON–OFF blinking is detected by the confocal single‐photon‐counting microscopy. Observed spectral and blinking properties comprise all features reported before in differently prepared single Si nanocrystals (SiNCs). Former apparently contradictory results are shown to be due to different experimental conditions. When the effect of dark periods (OFF switching) is removed the common ultimate photoluminescence properties of SiO2 passivated SiNCs are found, namely the quantum efficiency (QE) of about 10–20% up to the pumping rate corresponding to one exciton average excitation per quantum dot. At higher pump rates the QE is slowly decreasing as the 0.7th power of excitation. This is most likely due to Auger recombination which, however, seems to be weakened compared with measurements of nanocrystal assemblies. We conclude that SiNCs may be pumped above one exciton occupancy to yield a higher light emission, being advantageous for applications.
Photosynthetic organisms exposed to a dynamic light environment exhibit complex transients of photosynthetic activities that are strongly dependent on the temporal pattern of the incident irradiance. In a harmonically modulated light of intensity I approximately const.+sin(omegat), chlorophyll fluorescence response consists of a steady-state component, a component modulated with the angular frequency of the irradiance omega and several upper harmonic components (2omega, 3omega and higher). Our earlier reverse engineering analysis suggests that the non-linear response can be caused by a negative feedback regulation of photosynthesis. Here, we present experimental evidence that the negative feedback regulation of the energetic coupling between phycobilisome and Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC6803 indeed results in the appearance of upper harmonic modes in the chlorophyll fluorescence emission. Dynamic changes in the coupling of the phycobilisome to PSII are not accompanied by corresponding antiparallel changes in the Photosystem I (PSI) excitation, suggesting a regulation limited to PSII. Strong upper harmonic modes were also found in the kinetics of the non-photochemical quenching (NPQ) of chlorophyll fluorescence, of the P700 redox state and of the CO(2) assimilation in tobacco (Nicotiana tabaccum) exposed to harmonically modulated light. They are ascribed to negative feedback regulation of the reactions of the Calvin-Benson cycle limiting the photosynthetic electron transport. We propose that the observed non-linear response of photosynthesis may also be relevant in a natural light environment that is modulated, e.g., by ocean waves, moving canopy or by varying cloud cover. Under controlled laboratory conditions, the non-linear photosynthetic response provides a new insight into dynamics of the regulatory processes.
Fluorescence resonance energy transfer (FRET) under in vivo conditions is a well-established technique for the evaluation of populations of protein bound/unbound nucleic acid (NA) molecules or NA hybridization kinetics. However, in vivo FRET has not been applied to in vivo quantitative conformational analysis of NA thus far. Here we explored parameters critical for characterization of NA structure using single-pair (sp)FRET in the complex cellular environment of a living Escherichia coli cell. Our measurements showed that the fluorophore properties in the cellular environment differed from those acquired under in vitro conditions. The precision for the interprobe distance determination from FRET efficiency values acquired in vivo was found lower (∼31%) compared to that acquired in diluted buffers (13%). Our numerical simulations suggest that despite its low precision, the in-cell FRET measurements can be successfully applied to discriminate among various structural models. The main advantage of the in-cell spFRET setup presented here over other established techniques allowing conformational analysis in vivo is that it allows investigation of NA structure in various cell types and in a native cellular environment, which is not disturbed by either introduced bulk NA or by the use of chemical transfectants.
Octadecaoctaenal is a psittacofulvin pigment associated with the bright red coloration of parrots. It consists of a linear polyene chain terminated by an aldehyde group and therefore provides an opportunity to examine the fundamental factors controlling the excited state ordering and dynamics of polyenals. Steady-state and ultrafast time-resolved spectroscopy were performed on octadecaoctaenal and a derivative in which the aldehyde group was converted to a methylenehydroxyl group.It was found that for octadecaoctaenal, solvent proticity was more important than polarity in determining its excited state lifetime. Theoretical computations were carried out to reveal the origin of the effect. 2 3 4 5 6 7 8
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.