The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi‐scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust‐producing sources. The representation of intra‐annual and inter‐annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter‐annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas. Copyright © 2012 John Wiley & Sons, Ltd.
Dust intrusions from African desert regions have an impact on the Mediterranean Basin (MB), as they cause an anomalous increase of aerosol concentrations in the tropospheric column and often an increase of particulate matter at the ground level. To estimate the Saharan dust contribution to PM 10 , a significant dust intrusion event that occurred in June 2006 is investigated, joining numerical simulations and specific measurements. As a first step, a synoptic analysis of this episode is performed. Such analysis, based only on meteorological and aerosol optical thickness observations, does not allow the assessment of exhaustive informations. In fact, it is not possible to distinguish dust outbreaks transported above the boundary layer without any impact at the ground level from those causing deposition. The approach proposed in this work applies an ad hoc model chain to describe emission, transport and deposition dynamics. Furthermore, physical and chemical analyses (PIXE analysis and ion chromatography) were used to measure the concentration of all soil-related elements to quantify the contribution of dust particles to PM 10 . The comparison between simulation results and in-situ measurements show a satisfying agreement, and supports the effectiveness of the model chain to estimate the Saharan dust contribution at ground level.
Long term aircraft observations of wind magnitude along an ∼250 km flight track in central Italy, performed over 1.5 years, are compared with the output of an existing mesoscale prognostic-diagnostic (WRF-CALMET) model chain aimed at assessing wind potential maps at regional scale. Aircraft measurements are used to evaluate model performance along spatial and temporal transects at moderate altitude from the ground (∼75 m), where observational frameworks are rarely available. Spatial wind analysis was capable of assessing overall model performance, while highlighting some limitations: the implemented models have better performance in inland areas with respect to coastal areas, while they are capable of representing diurnal variability in all regions correctly. Overall agreement is within 3% in the cold season and 16% in the warm season, while the greatest differences, above 30%, are obtained in coastal areas in the summer. The hypothesis supporting these results is that summer sea breeze regimes that develop consistently from the coast through the interior land are not entirely resolved from mesoscale modelling. Finally, the model performance and limitations related to complex orography are highlighted. This study demonstrates the added value that may derive from aircraft wind measurements as an additional observational framework for applied meteorology studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.