Regulation of beta2-adrenergic receptor (beta2AR) levels by glucocorticoids is a physiologically important mechanism for altering beta2AR responsiveness. Glucocorticoids increase beta2AR density by increasing the rate of beta2AR gene transcription, but the cis-elements involved have not been well characterized. We now show that one of six potential glucocorticoid response elements (GREs) in the 5'-flanking region of the rat beta2AR gene is necessary for glucocorticoid-dependent stimulation of receptor gene expression. Using a nested set of deletion fragments of the rat beta2AR gene 5'-flanking region fused to a luciferase reporter gene, glucocorticoid-dependent induction of reporter gene expression in HepG2 cells was localized to a region between positions -643 and -152, relative to the transcription initiation site. In electrophoretic mobility shift assays, a double-stranded oligonucleotide incorporating a near-consensus GRE from this region (positions -379 to -365) formed complexes with the human recombinant glucocorticoid receptor, as well as with nuclear protein from dexamethasone-treated HepG2 cells. Mutation of a single base within this GRE sequence greatly diminished interaction of the mutated oligonucleotide with the human recombinant glucocorticoid receptor. The functional activity of the GRE was characterized using a luciferase reporter construct driven by a minimal thymidine kinase promoter. In HepG2 cells transfected with constructs containing the GRE, dexamethasone increased reporter gene expression approximately 3-fold, whereas a dexamethasone effect was not observed with constructs lacking the GRE. Taken together, these findings show that a GRE located at positions -379 to -365 in the 5'-flanking region of the rat beta2AR gene mediates glucocorticoid stimulation of beta2AR gene transcription.
Theoretical models of particle deposition in the respiratory tract predict high fractional deposition for particles of less than 0.1 micron, but there are few confirming experimental data for those predictions. We have measured the deposition fraction of a nonhygroscopic aerosol in the human respiratory tract. The aerosol had a count mean diameter of 0.044 micron SD of 1.93, as measured with an electrical aerosol analyzer, and was produced from a 0.01% solution of bis(2-ethylhexyl) sebacate using a condensation generator. Subjects inhaled the aerosol using a controlled respiratory pattern of 1 liter tidal volume, 12/min. Deposition was calculated as the difference in concentration between inhaled and exhaled aerosol of five size fractions corrected for system deposition and dead-space constants. Three deposition studies were done on each of five normal male volunteers. Means (+/- SE) for the five size fractions were 0.024 micron, 0.71 +/- 0.06; 0.043 micron, 0.62 +/- 0.06; 0.075 micron, 0.53 +/- 0.05; 0.13 micron, 0.44 +/- 0.04; and 0.24 micron, 0.37 +/- 0.06. These data demonstrate that deposition of inhaled particles in the 0.024- to 0.24-micron size range is high and increases with decreasing size. These observations agree with and validate predictions of mathematical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.