An intercomparison exercise on the measurement of personal dose equivalent Hp(10) was jointly organised by the International Atomic Energy Agency and the Nuclear Research Centre of Algiers through its Secondary Standard Dosimetry Laboratory in the African region. This intercomparison exercise was aimed at verifying the performance of the individual monitoring services of the participants in order to assess their capabilities to measure the quantity Hp(10) in photon (gamma and X ray) fields helping them to comply with dose limitation requirements. The scope of this intercomparison was aimed at passive dosemeters, which determine the personal dose equivalent in photon radiation fields, mainly for thermoluminescence and optically stimulated luminescence dosemeters. Twenty-seven countries from the Africa region and from outside Africa participated in this exercise. The intercomparison protocol, including the preparation of the dosemeters and the irradiation procedures, is described and the results are presented, analysed and discussed.
As part of the intercomparison on the measurement of personal dose equivalent Hp(10), jointly organised by the International Atomic Energy Agency and the Algerian Secondary Standard Dosimetry Laboratory, for the African region, up to 12 dosemeters were added to the packages of the 28 participants to evaluate the background and transport dose (BGTD), received by the dosemeters before and after their irradiation at the SSDL (environmental irradiations, scanning process at the airports, etc.). Out of the 28 participants, only 17 reported the corresponding BGTD measured values, which lied between 0.03 and 0.8 mSv. The mean measured value of BG was (0.25±0.14) mSv, which is significantly high compared with the lowest dose value used in the intercomparison exercise. The BGTD correction shifted the overall results of the intercomparison from an overestimation of dose (∼8 % before applying BGT dose correction) to an underestimation of dose (-9 % after correction). The measurement protocol and the detailed analysis of the results and applied corrections are discussed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.