The cellular localization of a neuronal and a glial cell specific protein (14-3-2 and S-100, respectively) has been explored in mouse hypothalamus in order to trace cell lineages. This study was performed on fixed slices, at the light microscope level, by using either the indirect peroxidase-labeled immunoglobulin technique or immunofluorescence. In the adult, only S-100 immunoreactivity was found in the ependymal layer. In contrast, the magnocellular neurons of the preoptic area displayed strong 14-3-2 immunoreactivity. At neonatal stages (fetal day 17-postnatal day 3), both 14-3-2 and S-100 immunoreactivities developed simultaneously in the same cells lining the ventral part of the third ventricle. Transient detachment of some of these ventricular cells could be visualized before migration in the hypothalamus where they remained as bipotential cells up to postnatal day 10. Later in the development, they differentiated into separate cells, one type containing 14-3-2 and the other S-100, like neurons and glial cells. These results argue for a developmental stage during which cells lining the ventricle are bipotential and may thus be candidates for the role of stem cells for both neuronal and glial lineages.
Two clones encoding human glial fibrillary acidic protein (GFAP) were isolated from a human astrocytoma cDNA library. The clones pHGFAP1 and pHGFAP2 were selected by the combined use of differential colony hybridization and hybridization-selection technique with polyclonal anti GFAP antiserum. The longer one, pHGFAP1, encompasses 3.0 kb and includes the 1.8 kb long 3' untranslated region specific to the human mRNA. Sequence data disclosed an extensive homology within the coding region of human and mouse GFAP cDNAs even in the end domains. Blot hybridization analysis of RNAs from human, rat and mouse brain revealed a single GFAP mRNA species of 3.1, 2.8 and 2.7 kb respectively and Southern blot experiments indicated that this mRNA is most probably transcribed from a unique gene. In situ hybridization performed with biotinylated probes on cultured mouse brain cells suggests both the sorting and the transport of GFAP mRNA throughout the cytoplasm and processes of the astrocytes. As a model of reactive gliosis secondary to degenerative disorders, 6-hydroxydopamine (6-OHDA) lesion of the substantia nigra in the rat was performed. GFAP mRNA increased 1.4 fold in the ipsilateral striatum on day 10 after the lesion. It then declined to the control level 4 months later contrasting with the lower and more sustained increase in preproenkephalin (PPE) mRNA. The interspecies cross-reactivity of the HGFAP probes make them useful as a tool for the molecular analysis of reactive gliosis in various experimental models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.