Context. The fringe sensor unit (FSU) is the central element of the phase referenced imaging and micro-arcsecond astrometry (PRIMA) dual-feed facility and provides fringe sensing for all observation modes, comprising off-axis fringe tracking, phase referenced imaging, and high-accuracy narrow-angle astrometry. It is installed at the Very Large Telescope Interferometer (VLTI) and successfully served the fringe-tracking loop during the initial commissioning phase. Aims. To maximise sensitivity, speed, and robustness, the FSU is designed to operate in the infrared K-band and to include spatial filtering after beam combination and a very-low-resolution spectrometer without photometric channels. It consists of two identical fringe sensors for dual-star operation in PRIMA astrometric mode. Methods. Unique among interferometric beam combiners, the FSU uses spatial phase modulation in bulk optics to retrieve real-time estimates of fringe phase after spatial filtering. The beam combination design accommodates a laser metrology for pathlength monitoring. An R = 20 spectrometer across the K-band makes the retrieval of the group delay signal possible. The calibration procedure uses the artificial light source of the VLTI laboratory and is based on Fourier transform spectroscopy to remove instrumental effects. Results. The FSU was integrated and aligned at the VLTI in July and August 2008. It yields phase and group delay measurements at sampling rates up to 2 kHz, which are used to drive the fringe-tracking control loop. During the first commissioning runs, the FSU was used to track the fringes of stars with K-band magnitudes as faint as m K = 9.0, using two VLTI auxiliary telescopes (AT) and baselines of up to 96 m. Fringe tracking using two Very Large Telescope (VLT) unit telescopes was demonstrated. Conclusions. The concept of spatial phase-modulation for fringe sensing and tracking in stellar interferometry is demonstrated for the first time with the FSU. During initial commissioning and combining stellar light with two ATs, the FSU showed its ability to improve the VLTI sensitivity in K-band by more than one magnitude towards fainter objects, which is fundamental for achieving the scientific objectives of PRIMA.
Abstract. Until now, the detailed interpretation of the observed microlensing events has suffered from the fact that the physical parameters of the phenomenon cannot be uniquely determined from the available astronomical measurements, i.e. the photometric lightcurves. The situation will change in the near-future with the availability of long-baseline, sensitive optical interferometers, which should be able to resolve the images of the lensed objects into their components. For this, it will be necessary to achieve a milliarcsecond resolution on sources with typical magnitudes K > ∼ 12. Indeed, brighter events have never been observed up to now by micro-lensing surveys. We discuss the possibilities opened by the use of long baseline interferometry in general, and in particular for one such facility, the ESO VLT Interferometer, which will attain the required performance. We discuss the expected accuracy and limiting magnitude of such measurements. On the basis of the database of the events detected by the OGLE experiment, we estimate the number of microlenses that could be available for measurements by the VLTI. We find that at least several tens of events could be observed each year. In conjunction with the photometric data, our ability to measure the angular separation between the microlensed images will enable a direct and unambiguous determination of both their masses and locations.
A new scatterometer-polarimeter is described. It measures the angular distribution of intensity and of the complete Mueller matrix of light scattered by rough surfaces and particle suspensions. The measurement time is 1 s/scattering angle in the present configuration but can be reduced to a few milliseconds with modified electronics. The instrument uses polarization modulation and a Fourier analysis of four detected signals to obtain the 16 Mueller matrix elements. This method is particularly well suited to online, real time, industrial process control involving rough surfaces and large particle suspensions (an arithmetic roughness or particle diameter of >1 microm). Some results are given.
MACAO stands for Multi Application Curvature Adaptive Optics. A similar concept is applied to fulfill the need for wavefront correction for several VLT instruments. MACAO-VLTI is one of these built in 4 copies in order to equip the Coude focii of the ESO VLT's. The optical beams will then be corrected before interferometric recombination in the VLTI (Very Large Telescope Interferometer) laboratory. MACAO-VLTI uses a 60 elements bimorph mirror and curvature wavefront sensor. A custom made board processes the signals provided by the wavefront detectors, 60 Avalanche Photo-diodes, and transfer them to a commercial Power PC CPU board for Real Time Calculation. Mirrors Commands are sent to a High Voltage amplifier unit through an optical fiber link. The tip-tilt correction is done by a dedicated Tip-tilt mount holding the deformable mirror. The whole wavefront is located at the Coude focus. Software is developed in house and is ESO compatible. Expected performance is a Strehl ratio sligthly under 60% at 2.2 micron for bright reference sources (star V<10) and a limiting magnitude of 17.5 (Strehl ~0.1). The four systems will be installed in Paranal successively, the first one being planned for June 2003 and the last one for June 2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.