Underground high temperature Superconductor (HTS) power cables have attracted extensive interest in recent years due to their potential for high power density. With funding support from the United States Department of Energy (DOE), the world's first transmission voltage level HTS power cable has been designed, fabricated and permanently installed in Long Island Power Authority (LIPA) grid. The HTS cable was successfully commissioned on April 22, 2008. In 2007, a new DOE Superconductor Power Equipment (SPE) program to address the outstanding issues for integrating HTS cables into the utility grid was awarded to the current project team (LIPA II). The goal of the LIPA II is to develop and install a replacement phase conductor manufactured using AMSC's second generation wire. In addition to the replacement of the phase conductor, the team will also address the outstanding components development necessary for full scale integration into a power grid including integral management of thermal shrinkage of the cable conductor, optimization of the cryostat design to mitigate the implications of potential cable damage, and the development and demonstration of a field splice in the operating utility grid and modular higher efficiency refrigeration system. This paper will report on the progress and status of LIPA II program. In addition, in-grid operation experience of existing 1G HTS Power cable is presented.Index Terms-HTS cable, LIPA and transmission level voltage, 2G HTS power cable.
Design of oil-free simple turbo type 65 K/6 KW helium and neon mixture gas refrigerator for high temperature superconducting power cable cooling AIP Conference Proceedings 613, 893 (2002)
Design of oil-free simple turbo type 65 K/6 KW helium and neon mixture gas refrigerator for high temperature superconducting power cable cooling AIP Conference Proceedings 613, 893 (2002)
ABSTRACTAir Liquide Advanced Technologies has developed for more than 40 years turboexpanders mainly for hydrogen and helium liquefiers and refrigerators and has in total more than 600 references of cryogenic turbo-expanders and cold compressors.The latest developments are presented in this paper. The key motivation of these developments is to improve the efficiency of the machines, and also to widen the range of operation. New impellers have been designed for low and high powers, the operation range is now between 200W and 200kW. The thrust bearings have been characterized in order to maximize the load which can be withstood and to increase the turbo-expander cold power. Considering low power machines, 3D open wheels have been designed and machined in order to increase the adiabatic efficiencies. A new type of machine, a turbobooster for methane liquefaction has been designed, manufactured and tested at AL-AT test facility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.