I The three-dimensional coordinates of the atoms in human haemoglobin are known, and there is a specific site in the deoxygenated form of the protein at which 2,3-diphosphoglycerate (DPG) interacts. 2 Molecular models of this site have been constructed and used to design compounds which should bind to the deoxy conformation and stabilize it. These compounds should thereby promote oxygen liberation, as does DPG. 3 The compounds so designed were found to promote oxygen liberation. Their relative potencies, as assessed by sigmoidal dose-response curves, are in the predicted sequence.
By the use of molecular models of Escherichia coli dihydrofolate reductase (DHFR), analogues of trimethoprim (TMP) were designed which incorporated various 3'-carboxyalkoxy moieties in order to acquire ionic interactions with positively charged active-site residues. Certain of these compounds have shown exceptionally high affinity for this enzyme. For example, the 3'-(carboxypentyl)oxy analogue was found to be 55-fold more inhibitory than TMP toward E. coli DHFR (Ki = 0.024 nM vs. 1.32 nM for TMP). X-ray crystallographic studies of E. coli DHFR in binary complexes with TMP and two members of this acid-containing series of compounds defined the binding of these inhibitors and showed the carboxyl group of the latter two inhibitors to be ionically bound to Arg-57. These observations were in agreement with postulated binding modes that were based on receptor modeling.
The discovery of clonidine (1; Chart I) as a potent, centrally acting, hypotensive drug1-4 has led to detailed studies on the relationship between structure and hypotensive activity in the class of 2-(phenylimino)imidazolidines of the clonidine type. The majority of these investigations has considered variations of the substitution in the phenyl moiety of the molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.