By taking advantage of the GaAs (631) corrugation self-assembled on top of multi-quantum well heterostructure interfaces, the modulation of the confined state wave functions (eigenstates) has been achieved, attaining quasi-one-dimensional or fractional dimension eigenstates. Two different theoretical approaches were used to compute the energy shift of subband optical transitions as a function of the interface corrugation geometrical configuration. For large nominal quantum well widths and small corrugation amplitude, the perturbation theory was employed, while a modified Lanczos algorithm assisted us to calculate the shifts when the corrugation amplitude was comparable to the nominal quantum well width. Experimentally, the heterostructures were grown by molecular beam epitaxy on (001) and (631) oriented substrates, where the quasi-one-dimensional ordering was reached by changing the As to Ga molecular beam fluxes ratio. It was found that the corrugated interfaces (i) break the wave function's in-plane symmetry, allowing transitions that, in principle, must be forbidden and (ii) induce blue shifts or red shifts in the order of 10 meV to the energy spectrum of the quantum wires depending on the lateral and vertical periodicities, exhibiting the presence of a lateral confinement system. The main result is the effective modulation of eigenstates through the interface corrugation control. Additionally, it was found that the interface modulation effect is greater for harmonic (n > 1) heavy (and light) hole subbands than for the ground states.
In this work the self-assembling of InAs quantum dots (QDs) within asymmetric barriers of (Al)GaAs is studied via reflection high energy electron diffraction (RHEED). A comparative study between the AlGaAs/InAs/GaAs interfaces and its mirror-like heterostructure GaAs/InAs/AlGaAs showed significant differences in the self-assembling and capping of the QDs. The critical thickness of InAs QDs results was proven to be larger when it is grown on AlGaAs alloys, compared with the deposition on GaAs layers. This change is explained by the reduced mobility of In atoms on the Al-containing surfaces, for which the QDs density is increased due to the strain relieve. Through the in-situ analysis of diffusion parameters, it is concluded that the mobility of In atoms decreases the mass transport of 2D and 3D precursors that conduces to the self-assembling of the QDs nanoislands, modifying the rate at which the QDs are formed. Further, during the first stages of QDs capping it is observed that the III-V materials intermixing plays a predominant role. The nanoislands are less affected when are covered by AlGaAs in comparison with the GaAs capping, preserving the QDs morphology and avoiding materials alloying. By following the RHEED intensity behavior during the QDs capping, a model was proposed to obtain quantitative parameters for the smoothing process. High resolution x ray diffraction (HRXRD) measurements show the composition of sharp interfaces for the AlGaAs/InAs/GaAs heterostructure. Lastly, numerical simulations were performed to evaluate the strain changes using the experimental information as input data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.