The dissociative adsorption of cyclopentadiene (C(5)H(6)) on Cu(111) yields a cyclopentadienyl (Cp) species with strongly anionic characteristics. The Cp potential energy surface and frictional coupling to the substrate are determined from measurements of dynamics of the molecule together with density functional calculations. The molecule is shown to occupy degenerate threefold adsorption sites and molecular motion is characterized by a low diffusional energy barrier of 40±3 meV with strong frictional dissipation. Repulsive dipole-dipole interactions are not detected despite charge transfer from substrate to adsorbate.
Abstract. Helium-3 spin-echo measurements of resonant scattering from the Si(111)-(1x1)H surface, in the energy range 4 − 14 meV, are presented. The measurements have high energy resolution yet they reveal bound state resonance (BSR) features with uniformly broad linewidths. We show that exact quantum mechanical calculations of the elastic scattering, using the existing potential for the Helium/Si(111)-(1x1)H interaction, cannot reproduce the linewidths seen in the experiment. Further calculations rule out inelastic and other mechanisms that might give rise to losses from the elastic scattering channels. We show that corrugation in the attractive part of the atom-surface potential is the most likely origin of the experimental lineshapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.