Recently, the term "inflammaging" was coined by Franceshci and colleagues to characterize a widely accepted paradigm that ageing is accompanied by a low-grade chronic up-regulation of certain proinflammatory responses. Inflammaging differs significantly from the traditional five cardinal features of acute inflammation in that it is characterized by a relative decline in adaptive immunity and Thelper 2 responses and is associated with increased innate immunity by cells of the mononuclear phagocyte lineage. While the over-active innate immunity characteristic of inflammaging may remain subclinical in many elderly individuals, a portion of individuals (postulated to have a "high responder inflammatory genotype") may shift from a state of "normal" or "subclinical" inflammaging to one or more of a number of age-associated diseases. We and others have found that IFN-γ and other pro-inflammatory cytokines interact with processing and production of Aβ peptide, the pathological hallmark feature of Alzheimer's disease (AD), suggesting that inflammaging may be a "prodrome" to AD. Although conditions of enhanced innate immune response with overproduction of pro-inflammatory proteins are associated with both healthy aging and AD, it is suggested that those who age "well" demonstrate anti-inflammaging mechanisms and biomarkers that likely counteract the adverse immune response of inflammaging. Thus, opposing the features of inflammaging may prevent or treat the symptoms of AD. In this review, we fully characterize the aging immune system. In addition, we explain how three novel treatments, (1) human umbilical cord blood cells (HUCBC), (2) flavanoids, and (3) Aβ vaccination oppose the forces of inflammaging and AD-like pathology in various mouse models.
The penicillin biosynthetic genes (pcbAB, pcbC,penDE) ofPenicillium chrysogenum AS-P-78 were located in a 106.5-kb DNA region that is amplified in tandem repeats (five or six copies) linked by conserved TTTACA sequences. The wild-type strains P. chrysogenum NRRL 1951 and Penicillium notatum ATCC 9478 (Fleming's isolate) contain a single copy of the 106.5-kb region. This region was bordered by the same TTTACA hexanucleotide found between tandem repeats in strain AS-P-78. A penicillin overproducer strain, P. chrysogenum El, contains a large number of copies in tandem of a 57.9-kb DNA fragment, linked by the same hexanucleotide or its reverse complementary TGTAAA sequence. The deletion mutant P. chrysogenum npelO showed a deletion of 57.9 kb that corresponds exactly to the DNA fragment that is amplified in
Background: Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), multiple sclerosis (MS), and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO), cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB 2 ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.