On the basis of a new photometric analysis of the Local Group dwarf irregular galaxy NCG 6822 based on observations obtained with the Advanced Camera for Surveys onboard the Hubble Space Telescope, we have obtained a new estimate of the extinction of two fields located in the southeast region of the galaxy. Because of significant differences in the distance estimates to NGC 6822 available in literature, we decided to provide an independent determination of the distance to this galaxy based on an updated and self-consistent theoretical calibration of the tip of the red giant branch brightness. As a result we newly determined the distance to NGC 6822 to be equal to (m − M) 0 = 23.54 ± 0.05, and compared our measurement with the most recent determinations of this distance.
We present a detailed photometric study of the dwarf irregular galaxy NGC 6822 aimed at investigating the properties of its stellar populations and, in particular, the presence of stellar radial gradients. Our goal is to analyse the stellar populations in six fields, which cover the whole bar of this dwarf galaxy. We derived the quantitative star formation history (SFH) of the six fields using the IAC method, involving IAC-pop/MinnIAC codes. The solutions we derived show an enhanced star formation rate (SFR) in Fields 1 and 3 during the past 500 Myr. The SFRs of the other fields are almost extinguished at very recent epochs and. We study the radial gradients of the SFR and consider the total mass converted into stars in two time intervals (between 0 and 0.5 Gyr ago and between 0.5 and 13.5 Gyr ago). We find that the scale lengths of the young and intermediate-to-old populations are perfectly compatible, with the exception of the young populations in Fields 1 and 3. The recent SF in these two fields is greater than in the other ones. This might be an indication that in these two fields we are sampling incipient spiral arms. Further evidence and new observations are required to prove this hypothesis. In addition, we derived the age-metallicity relations. As expected, the metallicity increases with time for all of the fields. We do not observe any radial gradient in the metallicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.