The nonlinear response of shallow foundations has been studied experimentally and analytically. However, the engineering community is not yet convinced of the applicability of such concepts in practice. A key prerequisite is the ability to realistically model such effects. Although several sophisticated constitutive models are readily available in the literature, their use in practice is limited, because (1) they typically require extensive soil testing for calibration; (2) as they are implemented in highly specialized numerical codes, they are usually restricted to simple superstructures; and (3) in most cases, they can only be applied by numerical analysis specialists. Attempting to overcome some of these difficulties, this paper develops a simplified but fairly comprehensive constitutive model for analysis of the cyclic response of shallow foundations. On the basis of a kinematic hardening constitutive model with Von Mises failure criterion (readily available in commercial finite element codes), the model is made pressure sensitive and capable of reproducing both the low-strain stiffness and the ultimate resistance of clays and sands. Encoded in ABAQUS through a simple user subroutine, the model is validated against (a) centrifuge tests of shallow footings on clay under cyclic loading and (b) large-scale tests of a square footing on dense and loose sand under cyclic loading, conducted in the European Laboratory for Structural Analysis for the TRISEE project. The performance of the model is shown to be quite satisfactory, and discrepancies between theory and experiment are discussed and potential culprits are identified. Requiring calibration of only two parameters and being easily implemented in commercial FE codes, the model is believed to provide an easily applicable engineering solution.
This paper uses a hybrid method for analysis and design of slope stabilizing piles that was developed in a preceding paper by the writers. The aim of this paper is to derive insights about the factors influencing the response of piles and pile-groups. Axis-to-axis pile spacing (S), thickness of stable soil mass (H u), depth (L e) of pile embedment, pile diameter (D), and pile group configuration are the parameters addressed in the study. It is shown that S ¼ 4D is the most cost-effective pile spacing, because it is the largest spacing that can still generate soil arching between the piles. Soil inhomogeneity (in terms of shear stiffness) was found to be unimportant, because the response is primarily affected by the strength of the unstable soil layer. For relatively small pile embedments, pile response is dominated by rigid-body rotation without substantial flexural distortion: the short pile mode of failure. In these cases, the structural capacity of the pile cannot be exploited, and the design will not be economical. The critical embedment depth to achieve fixity conditions at the base of the pile is found to range from 0:7H u to 1:5H u , depending on the relative strength of the unstable ground compared to that of the stable ground (i.e., the soil below the sliding plane). An example of dimensionless design charts is presented for piles embedded in rock. Results are presented for two characteristic slenderness ratios and several pile spacings. Single piles are concluded to be generally inadequate for stabilizing deep landslides, although capped pile-groups invoking framing action may offer an efficient solution.
SUMMARY This paper explores the effectiveness of a new approach to foundation seismic design. Instead of the present practice of over‐design, the foundations are intentionally under‐dimensioned so as to uplift and mobilize the strength of the supporting (stiff) soil, in the hope that they will thus act as a rocking–isolation mechanism, limiting the inertia transmitted to the superstructure, and guiding plastic ‘hinging’ into soil and the foundation–soil interface. An idealized simple but realistic one‐bay two‐story reinforced concrete moment resisting frame serves as an example to compare the two alternatives. The problem is analyzed employing the finite element method, taking account of material (soil and superstructure) and geometric (uplifting and P–Δ effects) nonlinearities. The response is first investigated through static pushover analysis. It is shown that the axial forces N acting on the footings and the moment to shear (M/Q) ratio fluctuate substantially during shaking, leading to significant changes in footing moment‐rotation response. The seismic performance is explored through dynamic time history analyses, using a wide range of unscaled seismic records as excitation. It is shown that although the performance of both alternatives is acceptable for moderate seismic shaking, for very strong seismic shaking exceeding the design, the performance of the rocking‐isolated system is advantageous: it survives with no damage to the columns, sustaining non‐negligible but repairable damage to its beams and non‐structural elements (infill walls, etc.). Copyright © 2011 John Wiley & Sons, Ltd.
Piles are extensively used as a means of slope stabilization. Despite the rapid advances in computing and software power, the design of such piles may still include a high degree of conservatism, stemming from the use of simplified, easy-to-apply methodologies. This paper develops a hybrid method for designing slope-stabilizing piles, combining the accuracy of rigorous three-dimensional (3D) finiteelement (FE) simulation with the simplicity of widely accepted analytical techniques. It consists of two steps: (1) evaluation of the lateral resisting force (RF) needed to increase the safety factor of the precarious slope to the desired value, and (2) estimation of the optimum pile configuration that offers the required RF for a prescribed deformation level. The first step utilizes the results of conventional slope-stability analysis. A novel approach is proposed for the second step. This consists of decoupling the slope geometry from the computation of pile lateral capacity, which allows numerical simulation of only a limited region of soil around the piles. A comprehensive validation is presented against published experimental, field, and theoretical results from fully coupled 3D nonlinear FE analyses. The proposed method provides a useful, computationally efficient tool for parametric analyses and design of slope-stabilizing piles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.