Identification of homogeneous subgroups of subjects plays a key role in the study of precision medicine. While there are a number of approaches based on the clustering of low-level features such as behavioral variables, work that makes use of fully multivariate nature of medical imaging data is very limited. Given that the individual variability in brain functional networks obtained from functional magnetic resonance imaging (fMRI) data is noted as being both significant and consistent like fingerprints, its use provides a particularly appealing approach to this challenging problem. We present a completely data-driven approach, subgroup identification using independent vector analysis (SI-IVA), which leverages the desirable properties of IVA to uncover the relationship across subjects along with the discovery of subgroup structures revealed by Gershgorin disc theorem. We show that SI-IVA outperforms an eigenanalysisbased approach by simulations. We then apply the method to real fMRI data obtained from patients of during resting state to identify group differences in multiple relevant brain regions including primary somatosensory and motor cortex, which demonstrates that SI-IVA provides interpretable and meaningful results.
Independent component analysis (ICA) of multi-subject functional magnetic resonance imaging (fMRI) data has proven useful in providing a fully multivariate summary that can be used for multiple purposes. ICA can identify patterns that can discriminate between healthy controls (HC) and patients with various mental disorders such as schizophrenia (Sz). Temporal functional network connectivity (tFNC) obtained from ICA can effectively explain the interactions between brain networks. On the other hand, dictionary learning (DL) enables the discovery of hidden information in data using learnable basis signals through the use of sparsity. In this paper, we present a new method that leverages ICA and DL for the identification of directly interpretable patterns to discriminate between the HC and Sz groups. We use multi-subject resting-state fMRI data from 358 subjects and form subject-specific tFNC feature vectors from ICA results. Then, we learn sparse representations of the tFNCs and introduce a new set of sparse features as well as new interpretable patterns from the learned atoms. Our experimental results show that the new representation not only leads to effective classification between HC and Sz groups using sparse features, but can also identify new interpretable patterns from the learned atoms that can help understand the complexities of mental diseases such as schizophrenia.
Identification of subgroups of subjects homogeneous functional networks is a key step for precision medicine. Independent vector analysis (IVA) is shown to be effective for this task, however, it has a substantial computing cost. We propose a constrained independent component analysis algorithm based on minimizing the entropy bound (c-EBM) to overcome the computational complexity limitation of IVA. A set of spatial maps used as constraints provides a connection across the datasets, provides alignment across subjectwise ICA analyses and serves as a foundation for subgroup identification. The approach makes use of the available prior knowledge while allowing flexible density modeling without an orthogonality requirement for the demixing matrix. Synthetic data and large scale multi-subject resting state fMRI data have both been used to evaluate the performance of the new algorithm, c-EBM. The findings demonstrate that c-EBM is adaptable in terms of various settings for the constraint parameter on the synthetic data. With multi-subject resting state fMRI data, c-EBM can effectively identify subgroups and discover meaningful brain networks that show significant group differences between subgroups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.