The goal of this study was to examine the ability of basic fibroblast growth factor (FGF-2) to promote reactivity and/or proliferation of astrocytes in vivo following brain injury, and the possible mechanisms involved. A small bilateral lesion in the motor-sensory cortex was performed, and either FGF-2, FGF-2 plus heparan sulfate, heparan sulfate, or saline was applied unilaterally in a piece of Gelfoam within the wound cavity. Following lesions, there was an increase in FGF-2 and FGF receptor (FGFR) immunoreactivities in the area surrounding the lesion in all the treatment groups. Rats that received treatment with recombinant FGF-2 alone showed an increase in the density of astrocytes as compared to the control group. The same group of rats exhibited an increase in the density of cells displaying FGF-2 immunoreactivity and cells displaying FGFR-1 immunoreactivity and cells displaying FGFR-1 immunoreactivity, and also an induction of FGF-2 mRNA in the tissue surrounding the lesion. The group of rats that received FGF-2 combined with heparan sulfate showed a larger increase in the same cellular parameters. Our results suggest that the FGF-2/FGFR system is involved in the regulation of astrocytic reactivity and/or proliferation in the brain and its action is potentiated by heparan sulfate. The action of FGF-2 on CNS injury appears to be part of an autocrine cascade that involves induction of FGF-2 and its receptor, thereby enhancing the ability of astrocytes to respond to FGF-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.