We have investigated the effect of the period thickness of the multilayer Mo 2 N/CrN deposited on Si substrate produced by reactive magnetron sputtering. Mo 2 N presents a face centered cubic structure and CrN an orthorhombic one. The residual stress of the coatings was determined by the measurement of the substrate curvature. The microstructure of the multilayer was investigated from the X-ray diffraction and scanning electron microscopy (cross section images). The residual stresses resulting from the deposition of the different bi-layer thickness were measured and correlated to the structural properties of the coating as well as the nanoindentation analysis of the coating. The stresses are compressive and tensile for the individual Mo 2 N and CrN layer respectively. The result shows that an increase of the multilayer coatings Mo 2 N/CrN thicknesses induce an increase of the hardness and the elastic modulus, in the other hand the tensile stress increases. The shift of the XRD diffraction peak (1 1 1) of Mo 2 N at high angle which means the reduction of the residual stress is in good agreement with the residual stresses measurements.
Radiation damage induced in Zircaloy-4 by 20 MeV Au ions was investigated using Grazing x-ray diffraction (GIXRD), positron annihilation techniques, micro-and nano-hardness techniques. The irradiations were performed at room temperature in the fluence range 1 × 1013–5 × 1014 ions cm−2 corresponding to 0.07–3.63 displacements per atom (dpa). The grazing incidence angle x-ray diffraction (GIXRD) revealed the presence of the hydride precipitates in the analyzed zircaloy-4. According to our experimental data it is found that the amount of these precipitates decreases after irradiation as emphasized by GIXRD and Positron Annihilation Lifetime Spectroscopy (PALS) results. The same data revealed also a zircaloy-4 swelling above a certain dose. From the combination of domain size/microstrain with the micro- and nano-hardness results, we conclude that the Zircaloy hardening is mainly due to the dislocation formation indicating the effect of the microstructure on the mechanical properties. Moreover, from the dose dependence of irradiation hardening we conclude that the transition point from low-dose to high-dose regime is observed around 0.07 dpa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.