Accumulating evidence supports a role of chemokines and their receptors in brain function. Up to now scarce evidence has been given of the neuroanatomical distribution of chemokine receptors. Although it is widely accepted that chemokine receptors are present on glial cells, especially in pathological conditions, it remains unclear whether they are constitutively present in normal rat brain and whether neurons have the potential to express such chemokine receptors. CXCR4, a G protein-coupled receptor for the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) was reported to have possible implications in brain development and AIDS-related dementia. By dual immunohistochemistry on brain sections, we clearly demonstrate that CXCR4 is constitutively expressed in adult rat brain, in glial cells (astrocytes, microglia but not oligodendrocytes) as well as in neurons. Neuronal expression of CXCR4 is mainly found in cerebral cortex, caudate putamen, globus pallidus, substantia innominata, supraoptic and paraventricular hypothalamic nuclei, ventromedial thalamic nucleus and substantia nigra. Using confocal microscopy, a differential distribution of CXCR4 in neuronal perikarya and dendrites can be observed according to the brain structure. Furthermore, this work demonstrates for the first time the coexistence of a chemokine receptor with classical neurotransmitters. A localization of CXCR4 is thus observed in neuronal cell bodies expressing choline acetyltransferase-immunoreactivity in the caudate putamen and substantia innominata, as well as in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta. In conclusion, the constitutive neuronal CXCR4 expression suggests that SDF-1/CXCL12 could be involved in neuronal communication and possibly linked up with cholinergic and dopaminergic neurotransmission and related disorders.
Recent studies demonstrated that the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 and its receptor, CCR2, play important roles in various brain diseases. In this study, using quantitative autoradiography, we studied the pharmacological properties of [125 I]MCP-1/CCL2 binding in rat brain and we clearly showed the distribution of CCR2 receptors in cerebral cortex, nucleus accumbens, striatum, amygdala, thalamus, hypothalamus, hippocampus, substantia nigra, mammillary bodies and raphe nuclei. Moreover, using double fluorescent immunohistochemistry, we showed that CCR2 receptors were constitutively expressed on neurons and astrocytes. Using RT-PCR methods, we demonstrated that CCR2 mRNA is present in various brain areas described above. Four hours after an acute intraperitoneal lipopolysaccharide injection, we showed that MCP-1/CCL2 binding was up-regulated in several brain structures; this effect took place on both CCR2B labelled neurons and astrocytes and to a lesser extent on activated microglia. To explore neurobiological function of CCR2, actimetric study was carried out. After intracerebroventricular injections of MCP-1/CCL2, we showed that motor activity was markedly decreased. Abbreviations used: BSA, bovine serum albumin; DEPC, diethylpirocarbonate; EAE, experimental autoimmune encephalomyelitis; FITC, fluorescein isothiocyanate; GFAP, glial fibrillary acidic protein; IL-1, interleukin-1; IL-8, interleukin-8; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; MIP-1a, macrophage inflammatory protein-1a; MS, multiple sclerosis; PBS, phosphatebuffered saline; RANTES, regulated on activation normal T-cell expressed and secreted; SDF-1a, stromal cell-derived factor-1a; TARC, thymus and activation-regulated chemokine; TRITC, tetramethylrhodamine isothiocyanate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.