Compared with walking (W), Nordic walking (NW) exhibits greater cardiopulmonary and cardiovascular benefits. Some authors conjecture that compared with W or running (R), NW imposes smaller mechanical loads on the musculoskeletal system. The purpose of the current study was to quantify any differences in joint loading of the lower extremities among NW, W, and R. Fifteen experienced adults participated. Kinematic and force measurements were combined using an inverse dynamics approach to yield joint moments. The results showed no biomechanical benefit of NW. Instead, NW involved greater knee joint loading just after heel strike compared with W. This was due to the longer steps and the higher sole angle during the first part of the stance phase. The sagittal and frontal plane moments were smaller for NW compared with R, but in the transverse plane, the ankle moments were greater in NW than in W or R. Based on these results, NW is not recommended as an exercise for persons who seek to reduce biomechanical loading of the lower extremities.
On nearly every running event a heterogeneous structure of participants regarding body height and body weight can be observed. This study should figure out whether the running shoe manufacturers will consider this anthropometric variability. Moreover it should be investigated the runners needs based on different anthropometrics regarding preferred cushioning and forefoot flexibility properties. In order to check whether the running shoe manufacturers will apply a grading pattern, a dynamic material study with conventional running shoes in different sizes was conducted. In a second step a field study in Middle Europe and North America with 244 female and 227 male runners was organized. Every subject had to run and evaluate 7 different shoe modifications. Based on the material study it is to state, that the running shoe manufacturers currently do not consider a systematic grading of cushioning and forefoot flexibility properties. In contrast to this, the field study reveals the necessity to grade these properties. A shoe size dependent and a geographic grading concept are suggested. It is supposed, that the application of these grading concepts do not only provide a comfort improvement, but they also contribute to a reduction of joint loads of the lower extremities and consequently to a prevention of overuse injuries.
Based on a higher cardio-pulmonary and cardio-vascular benefit and a promised reduction of mechanical load of the musculoskeletal system Nordic Walking (NW) shows an increased market potential. The present study should investigate whether there are biomechanical differences between the locomotion patterns NW, walking and running. Moreover possible resultant load differences should be determined. Eleven subjects, who were already experienced with the NW-technique, participated in this experiment. The kinematic data were collected using two high-speed camera systems from posterior and from lateral at the same time. Simultaneously the ground reaction forces were recorded. The kinematic and the kinetic data reveal differences between the three analyzed locomotion patterns. For NW as well as walking the mechanical load of the lower extremity is lower compared to running. None of the kinematic parameters suggest a "physiological benefit" of NW compared to walking. Moreover NW shows higher vertical and horizontal forces during landing. Exclusively the lower vertical force peak during push off indicates a lower mechanical load for NW in comparison to walking. Consequently it is questionable is NW -- based on its promised "biomechanical benefits" compared to walking -- should be still recommended for overweight people and for people with existing musculoskeletal problems of the lower limb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.