A new resource for sun strength data in Southern Africa has been established with the commissioning of a regional network of solar monitoring stations. The Southern African Universities Radiometric Network (SAURAN) is an initiative of Stellenbosch University and the University of KwaZulu-Natal (UKZN), and consists of an initial set of ten ground stations equipped with secondary standard thermopile radiometers. SAURAN’s aim is to provide a long-term record of sun strength in a region that shows excellent potential for the deployment of solar energy technologies. Instruments measuring direct normal irradiance (DNI), diffuse horizontal irradiance (DHI) and global horizontal irradiance (GHI) feed time-averaged data over 1-minute, hourly and daily intervals to a central archive from where they are accessible to the public via a website interface. Meteorological data is also provided by most of the stations. This paper gives a brief background to the SAURAN project and describes the network’s operation, coverage and future expansion. Examples of solar energy irradiance plots are also provided to illustrate the information available from the SAURAN database.
The response of the electrical parameters of photovoltaic cells under concentrated solar irradiance has been the subject of many studies performed in recent times. The high saturation conditions typically found in solar cells that are subjected to highly concentrated solar radiation may cause electrically active cell features to behave differently than under monochromatic laser illumination, normally used in light beam induced current (LBIC) investigations. A high concentration solar LBIC (S-LBIC) measurement system has been developed to perform localized cell characterization. The responses of silicon solar cells that were measured qualitatively include externally biased induced cell current at specific cell voltages, I(V), open circuit voltage, V(oc), and the average rate of change of the cell bias with the induced current, DeltaV/DeltaI(V), close to the zero bias region. These images show the relative scale of the parameters of a cell up to the penetration depth of the solar beam and can be obtained with relative ease, qualifying important electrical response features of the solar cell. The S-LBIC maps were also compared with maps that were similarly obtained using a high intensity He-Ne laser beam probe. This article reports on the techniques employed and initial results obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.