This paper presents a modeling approach for strained silicon surrounding gate MOSFETs. The main contribution of this work is the simplification of the charge model by using an explicit solution technique which includes the strained and quantum effects. Quantum effects are essential due to extreme scaling of radius and oxide thickness. These can be solved by integrating the quantum capacitance and threshold in the proposed model. The gate capacitance is formulated based on a centroid charge that can be applied for multiple doping levels and structural dimensions. Meanwhile, the quantum effect on the channel due to carrier confinement can be approximated based on the radius of the channel. For the simulator, the Bohm Quantum Model (BQP) is used to facilitate the quantum effect. Our explicit model is in good agreement with the numerical simulator, for various gate voltages, doping concentration and structural effects, based on the centroid and inversion charge. It is found that the doping level can contribute to the changes in the centroid charge position from the silicon-oxide interface to the center of the channel. In addition, the tensile strain shows a significant impact on the electrical properties of the strained silicon surrounding gate such as threshold voltage, inversion charge, and current. This technique holds the potential for implementation is owing to advantages such as fast data computing which can be directly integrated into the circuit simulator.
<span>Strain-based on advanced MOSFET is a promising candidate for the future of CMOS technology. A numerical model is not favorable compared to a compact model because it cannot be integrated into most simulator software. Thus, a compact model is proposed to overcome the shortcomings in the analytical model. In this paper, a charge-based compact model is presented for long-channel strained Gate-All-Around Silicon Nanowire (GAA SiNW) from an undoped channel to a doped body. The model derivation is based on an inversion charge which has been solved explicitly using the smoothing function. The drain current model is formulated from Pao Sah’s dual integral which is formed in terms of inversion charge at the drain and source terminals. The proposed model has been extensively verified with the numerical simulator data. The strained effect on the electrical parameters are studied based on inversion charge, threshold voltage and current-voltage (I-V) characteristics. Results show that the current, the inversion charge and the threshold voltage can be greatly improved by the strain. The threshold voltage was reduced approximately 40% from the conventional GAA SiNW. Moreover, the inversion charge was improved by 30 % and the on-state current has doubled compared to unstrained device.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.