We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a twophase time-projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows the selection of only the innermost 48 kg as the ultralow background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in the signal region with an expected background of (1.8±0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic weakly interacting massive particle (WIMP) nucleon scattering cross sections above 7.0×10-45 cm2 for a WIMP mass of 50 GeV/c2 at 90% confidence level. (13) We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows to select only the innermost 48 kg as ultra-low background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in a pre-defined signal region with an expected background of (1.8 ± 0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic WIMP-nucleon scattering cross-sections above 7.0 × 10 −45 cm 2 for a WIMP mass of 50 GeV/c 2 at 90% confidence level.
The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. An observed-to-predicted ratio of events of 0.944 ± 0.016 (stat) ± 0.040 (syst) was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GW th reactors. The results were obtained from a single 10 m 3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 flux measurement after correction for differences in core composition. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter sin 2 2θ13. Analyzing both the rate of the prompt positrons and their energy spectrum we find sin 2 2θ13= 0.086 ± 0.041 (stat) ±0.030 (syst), or, at 90% CL, 0.017 < sin 2 2θ13 < 0.16. We report first results of a search for a non-zero neutrino oscillation [1] mixing angle, θ 13 , based on reactor antineutrino disappearance. This is the last of the three neutrino oscillation mixing angles [2,3] for which only upper limits [4,5] are available. The size of θ 13 sets the required sensitivity of long-baseline oscillation experiments attempting to measure CP violation in the neutrino sector or the mass hierarchy.In reactor experiments [6,7] addressing the disappearance ofν e , θ 13 determines the survival probability of electron antineutrinos at the "atmospheric" squaredmass difference, ∆m 2 atm . This probability is given by:where L is the distance from reactor to detector in meters and E the energy of the antineutrino in MeV. The full formula can be found in Ref.[1]. Eq. 1 provides a direct way to measure θ 13 since the only additional input is the well measured value of |∆m 2 atm | = (2.32Other running reactor experiments [9,10] are using the same technique.Electron antineutrinos of < 9 MeV are produced by reactors and detected through inverse beta decay (IBD): ν e + p → e + + n. Detectors based on hydrocarbon liquid scintillators provide the free proton targets. The IBD signature is a coincidence of a prompt positron signal followed by a delayed neutron capture. We present here our first results with a detector located ∼ 1050 m from the two 4.25 GW th thermal power reactors of the Chooz Nuclear Power Plant and under a 300 MWE rock overburden. The analysis is based on 101 days of data including 16 days with one reactor off and one day with both reactors off.The antineutrino flux of each reactor depends on its thermal power and, for the four main fissioning isotopes, 235 U, 239 Pu, 238 U, 241 Pu, their fraction of the total fuel content, their energy released per fission, and their fission and capture cross-sections. The fission rates and associated errors were evaluated using two predictive and complementary reactor simulation codes: MURE [17,18] and DRAGON [19]. This allowed a study of the sensitivity to the important reactor parameters (e.g.. thermal power, boron concentration, temperatures and densities). The quality of these simulations...
The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spinindependent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) • 10(−)(4) (kg•day•keV)(−)(1), mainly due to the decay of (222)Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t•y)(−)(1) from radiogenic neutrons, (1.8 ± 0.3) • 10(−)(2) (t•y)(−)(1) from coherent scattering of neutrinos, and less than 0.01 (t•y)(−)(1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script L(eff), which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 • 10(−)(47) cm(2) at m() = 50 GeV/c(2).
After the completion of the gallium solar neutrino experiments at the Laboratori Nazionali del Gran Sasso (Gallex: 1991(Gallex: -1997 GNO: 1998 GNO: -2003 we have retrospectively updated the Gallex results with the help of new technical data that were impossible to acquire for principle reasons before the completion of the low rate measurement phase (that is, before the end of the GNO solar runs). Subsequent high rate experiments have allowed the calibration of absolute internal counter efficiencies and of an advanced pulse shape analysis for counter background discrimination. The updated overall result for Gallex (only) is 73.4 +7.1 −7.3 SNU. This is 5.3% below the old value of 77.5 +7.5 −7.8 SNU [1], with a substantially reduced error. A similar reduction is obtained from the reanalysis of the 51 Cr neutrino source experiments of 1994/1995.
The Double Chooz experiment has observed 8,249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power × detector mass × livetime) exposure using a 10.3 m 3 fiducial volume detector located at 1050 m from the reactor cores of the Chooz nuclear power plant in France. The expectation in case of θ13= 0 is 8,937 events. The deficit is interpreted as evidence of electron antineutrino disappearance. From a rate plus spectral shape analysis we find sin 2 2θ13 = 0.109 ± 0.030(stat) ± 0.025(syst). The data exclude the no-oscillation hypothesis at 99.8% CL (2.9σ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.