We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a twophase time-projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows the selection of only the innermost 48 kg as the ultralow background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in the signal region with an expected background of (1.8±0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic weakly interacting massive particle (WIMP) nucleon scattering cross sections above 7.0×10-45 cm2 for a WIMP mass of 50 GeV/c2 at 90% confidence level. (13) We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows to select only the innermost 48 kg as ultra-low background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in a pre-defined signal region with an expected background of (1.8 ± 0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic WIMP-nucleon scattering cross-sections above 7.0 × 10 −45 cm 2 for a WIMP mass of 50 GeV/c 2 at 90% confidence level.
The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spinindependent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) • 10(−)(4) (kg•day•keV)(−)(1), mainly due to the decay of (222)Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t•y)(−)(1) from radiogenic neutrons, (1.8 ± 0.3) • 10(−)(2) (t•y)(−)(1) from coherent scattering of neutrinos, and less than 0.01 (t•y)(−)(1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script L(eff), which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 • 10(−)(47) cm(2) at m() = 50 GeV/c(2).
After the completion of the gallium solar neutrino experiments at the Laboratori Nazionali del Gran Sasso (Gallex: 1991(Gallex: -1997 GNO: 1998 GNO: -2003 we have retrospectively updated the Gallex results with the help of new technical data that were impossible to acquire for principle reasons before the completion of the low rate measurement phase (that is, before the end of the GNO solar runs). Subsequent high rate experiments have allowed the calibration of absolute internal counter efficiencies and of an advanced pulse shape analysis for counter background discrimination. The updated overall result for Gallex (only) is 73.4 +7.1 −7.3 SNU. This is 5.3% below the old value of 77.5 +7.5 −7.8 SNU [1], with a substantially reduced error. A similar reduction is obtained from the reanalysis of the 51 Cr neutrino source experiments of 1994/1995.
Einleitung Es gilt allgemein als gesichertes Wissen, daB die Sonne und alle ubrigen Sterne (abgesehen von speziellen, nur kurz andauernden Phasen in der Sternentwicklung) die Energie, die sie von ihrer Oberflache abstrahlen, durch Kernfusion, also durch Verschmelzung leichterer chemischer Elemente in schwerere beziehen. In der Tat beruht das gesamte Gebaude der nuklearen Astrophysik auf dieser plausiblen Annahme. Der direkte experimentelle Beweis dafur stand allerdings bisher noch aus. Da die Beobachtung der von der Oberflache der Sonne emittierten Strahlung keine direkten Schlusse auf die Energieerzeugungsprozesse im Sonneninneren erlaubt, besteht die einzige Moglichkeit fur diesen Beweis im Nachweis der Neutrinos, die in einigen der in der Sonne ablaufenden Fusionsreaktionen erzeugt werden sollten. Fur diese aufwendigen und schwierigen Experimente gibt es allerdings noch eine weitere wichtige Motivation: Sie bieten unter Umstanden die einzige Moglichkeit, etwas uber bestimmte Eigenschaften des Elementarteilchens Neutrino, wie zum Beispiel seine Ruhmasse oder sein magnetisches Moment, zu erfahren. Die bisher vergeblichen Versuche, diese Eigenschaften in terrestrischen Experimenten zu bestimmen, geben AnlaB zu der Vermutung, daB Auswirkungen dieser Eigenschaften eventuell nur uber astronomische Distanzen zwischen Neutrinoquelle und Detektor meBbar werden. Die Sonne als ganz normaler Hauptreihenstern sollte nach dem oben gesagten ihre Energie aus der Fusion von Wasserstoff in Helium beziehen. Bei den Temperaturen, die man nach dem sogenannten Standard-Sonnenmodell (SSM) im Sonneninneren envartet, Iauft diese Fusion hauptsachlich uber den Proton-Proton-Zyklus ab, an dessen Beginn die Verschmelzung zweier Protonen zu einem Deuteriumkern unter Emission der sogenannten pp-Neutrinos (0-0,42 MeV) Nach vieljahriger Vorbereitungszeit hat das Europaische GALLEX-Sonnenneutrino-Experiment Anfang Juni diesen Jahres die ersten Ergebnisse veroffentlicht. Der vorlaufige MeBwert (83 4 21 SNU) muB einen wesentlichen Beitrag der sogenannten pp-Neutrinos enthalten. Damit konnten zum ersten Ma1 die Neutrinos nachgewiesen werden, die am Beginn der Fusion von Wasserstoff zu Helium entstehen und deren FluR untrennbar mit der Energieerzeugung in der Sonne verbunden ist. Auf der anderen Seite ergibt das GALLEX-Resultat, wie die bisherigen Experimente auch, ein Defizit gegeniiber der Standard-Sonnenmodell-Vorhersage (132 SNU). Der Grund hierfiir ist nach wie vor unklar. Die gegenwartigen Daten aller Experimente zusammengenommen deuten allerdings darauf hin, dan die Losung eher in einer Abkehr vom Standard-Modell der Teilchenphysik als in einer Revision des Standard-Sonnenmodells zu suchen ist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.