Porous silicon is a sponge-like structure of monocrystalline silicon which although accidentally discovered, soon became one of the most well-researched silicon structures. Its properties and applications have been the main subject of several books and more than a dozen review articles. However, a survey of porous silicon fabrication methods has not been published even though more than 20 different routes have been developed to synthesize this material. This chapter briefly discusses the properties of porous silicon, describes its fabrication methods, and introduces its applications.
In this paper we investigate the effects of supply voltage and the temperature on the characteristics of the Static Random Access Memory (SRAM). Two nanoscale SRAM cells based on Carbon Nanotube Field Effect Transistors (CNFETs) and Silicon MOSFET Transistors (Si-MOSFETs) were investigated for application in 32nm technology node. Simulation studies show that the stability of CNFET SRAM against supply voltage variation and temperature influences is larger than those of its Si-MOSFET SRAM counterpart. Furthermore, the circuit performance affected by these two parameters in a 32k SRAM array was investigated. The results show that the read access time in CNFET SRAM arrays based on chirality vectors bigger than (23,0), is less than conventional MOSFET SRAM array.
KeywordsCarbon nanotube field-effect transistor (CNFET), SRAM, supply voltage effects, temperature effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.