The corrosion inhibition of cast iron in 1 M HCl by Phenanthroline (Phen) was investigated using potentiodynamic polarization (PDP) curves, electrochemical impedance spectroscopy (EIS), surface analysis and theoretical calculations. It is found that Phen exhibits high inhibition activity towards the corrosive action of HCl and its adsorption obeys the Langmuir adsorption isotherm model. The results showed that inhibition efficiency increases with Phen concentration up to a maximum value of 96% at 1.4 mM, and decreases slightly with the increase in temperature. The free adsorption energy value indicates that Phen adsorbs on cast iron surface in 1 M HCl via a simultaneous physisorption and chemisorption mechanism. Scanning electron microscopy (SEM) micrographs, atomic force microscopy (AFM) and FTIR analysis confirmed the formation of a protective film on cast iron surface, resulting in the improvement of its corrosion resistance in the studied aggressive solution. Quantum chemical calculations at the DFT level were achieved to correlate electronic structure parameters of Phen molecules with their adsorption mode.
The effect of temperature on the corrosion behaviour of a synthesized iron-based alloy in 1 N sulphuric acid solution has been examined by means of three electrochemical techniques. Thereafter, we studied the influence of an anionic surfactant (sodium dodecyl benzene sulfonate) at various concentrations on the electrochemical behaviour of the ferrous alloy. The obtained results show that the temperature increase reduced the performance of the used alloy, in the acidic environment. Otherwise, the surfactant inhibits the alloy dissolution in the sulphuric acid, through its adsorption on the metal surface without modifying the mechanism of corrosion process. We also noticed that the highest inhibition effect is obtained at a concentration above its critical micelle concentration (CMC). Langmuir adsorption isotherm fits well with the experimental data.
The electrochemical degradability of Al-20% Mg and hypereutectic Al-22% Si industrial alloys was evaluated in an aggressive acidic environment, namely 1 M H2SO4, using potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) techniques. The microstructure and constituting phases of the surface alloys were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM), coupled with Energy Dispersive X-ray Spectroscopy (EDX). It was found that the two alloys' corrosion behavior mainly depends on their crystalline phases. The presence of the active intermetallic β-Al3Mg2 phase in the Al alloy with high Mg content induced a preferential Mg dissolution, which caused a severe intergranular attack on this alloy by the corrosive solution. Meanwhile, the Al alloy containing high Si content, which presented the eutectic Al-Si phase, showed a uniform and weaker dissolution. It was also observed that a rise in temperature reduced the corrosion performance of the two studied alloys, as these corroded faster than pure aluminum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.