The efficacy of the mitochondrially encoded cytochrome b gene as a molecular marker for the discrimination of the reservoir host species of the Lyme borreliosis spirochete, Borrelia burgdorferi sensu lato (s.l.), in its European vector Ixodes ricinus (Acari: Ixodidae) was determined. Degenerate PCR primers were designed which amplified orthologous regions of the cytochrome b gene in several animal species which act as B. burgdorferi s.l. reservoirs and hosts for I. ricinus. PCR products were amplified and characterized by hybridization and restriction fragment length polymorphism analysis. Restriction fragment length polymorphism analysis of a 638-bp PCR product with HaeIII and DdeI revealed unique restriction fragment profiles, which allowed the taxonomic identification of animals to the genus level. A system was devised for the detection of the larval host blood meal from the remnants in unfed nymphal I. ricinus ticks by nested PCR amplification. An inverse correlation was demonstrated between amplicon size and successful PCR amplification of host DNA from the nymphal stage of the tick. The stability of the cytochrome b product as a marker for the identification of the larval host species in the nymphal instar was demonstrated up to 200 days after larval ingestion (approximately 165 days after molting) by reverse line blotting with a host-specific probe. This assay has the potential for the determination of the reservoir hosts of B. burgdorferi s.l. by using extracts from the same individual ticks for both the identification of the host species and the detection of the Lyme borreliosis spirochete.
Unfed nymphal and adult Ixodes ricinus ticks were collected from five locations within the 10,000-ha Killarney National Park, Ireland. The distribution and prevalence of the genomospecies of Borrelia burgdorferi sensu lato in the ticks were investigated by PCR amplification of the intergenic spacer region between the 5S and 23S rRNA genes and by reverse line blotting with genomospecies-specific oligonucleotide probes. The prevalence of ticks infected with B. burgdorferi sensu lato was significantly variable between the five locations, ranging from 11.5 to 28.9%. Four genomospecies were identified as B. burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, and VS116. Additionally, untypeable B. burgdorferi sensu lato genomospecies were identified in two nymphs. VS116 was the most prevalent of the genomospecies and was identified in 50% of the infected ticks. Prevalences of B. garinii and B. burgdorferi sensu stricto were similar (17 and 18%, respectively); however, significant differences were observed in the prevalence of these genomospecies in mixed infections (58.8 and 23.5%, respectively). Notably, the prevalence of B. afzelii was low, comprising 9.6 and 7.4%, respectively, of single and mixed infections. Significant variability was observed in the distribution and prevalence of B. burgdorferi sensu lato genomospecies between locations in the park, and the diversity and prevalence of B. burgdorferi sensu lato genomospecies was typically associated with woodland. The distributions of B. burgdorferi sensu lato genomospecies were similar in wooded areas and in areas bordering woodland, although the prevalence of B. burgdorferi sensu lato infection was typically reduced. Spatial distributions vegetation composition, and host cenosis of the habitats were identified as factors which may affect the distribution and prevalence of B. burgdorferi sensu lato genomospecies within the park.
Ixodes ricinus ticks infected with Borrelia burgdorferi sensu lato were numerous on the edges of paths and roads in a recreational park in south-western Ireland. The abundance of ticks at different sites was related to the presence of deer, but a negative relationship was shown between tick abundance and tick infection rates. This is thought to be due to the deposition of large numbers of uninfected ticks by deer, which are apparently not good reservoir hosts of B. burgdorferi s.l. Blood meal analysis only detected deer DNA in uninfected nymphs. Reservoir competent rodents, Apodemus sylvaticus and Clethrionomys glareolus, were abundant at all sites and a high proportion of captured specimens were infested with larval ticks. However, very few rodents were infected with B. burgdorferi s.l. and none of the unfed infected nymphs analysed for the identity of their larval blood meal had fed on rodents. The spirochaetes detected in I. ricinus in the study area may be poorly adapted to rodents or are not transmitted readily because of the absence of nymphal infestation. The majority of spirochaetes in these ticks were apparently acquired from non-rodent hosts, such as birds.
Questing Ixodes ricinus ticks were collected from six locations throughout Ireland and 638 nymphs, 111 females and 118 males were investigated for infection with Borrelia burgdorferi sensulato (s.l.). The total prevalence of B. burgdorferi s.l. in the ticks was determined as 14.9% by polymerase chain reaction (PCR) amplification of the spacer region of 5S-23S rRNA genes. Infection prevalence was significantly higher in adult (20.1%) Ixodes ricinus compared to nymphs (13.1%). The prevalence of infection in adult male and female ticks was similar (19.5% and 20.7% respectively). The genomospecies B. burgdorferi sensu stricto, B. afzelii, B. garinii and group VS116 were identified by reverse line blot (RLB) using genomospecies specific oligonucleotide probes. The most prevalent B. burgdorferi genomospecies identified were VS116 (34.6%), B. garinii (24.3%) and B. burgdorferi sensu stricto (18.4%). B. afzelii was uncommon (6.6%). Multiple infections were observed in 13.2% of the infected ticks. The distribution of the genomospecies showed geographical variation and also seemed to be influenced by the nature of the habitat. A broad range of genomospecies seemed to be associated with the presence of a wide spectrum of potential reservoir hosts in the habitat and also with a high overall prevalence of B. burgdorferi s.l.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.