We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ∼450 deg 2 of imaging data from the Kilo Degree Survey (KiDS). For a flat ΛCDM cosmology with a prior on H 0 that encompasses the most recent direct measurements, we find S 8 ≡ σ 8 Ω m /0.3 = 0.745 ± 0.039. This result is in good agreement with other low redshift probes of large scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3σ tension in S 8 and 'substantial discordance' in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved 'self-calibrating' version of lensfit validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov Chains are available at http://kids.strw.leidenuniv.nl.
We measure cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137 deg2 of the sky. Thanks to the high effective galaxy number density of ∼17 arcmin−2, even after conservative cuts such as a magnitude cut of i < 24.5 and photometric redshift cut of 0.3 ≤ z ≤ 1.5, we obtain a high-significance measurement of the cosmic shear power spectra in four tomographic redshift bins, achieving a total signal-to-noise ratio of 16 in the multipole range 300 ≤ ℓ ≤ 1900. We carefully account for various uncertainties in our analysis including the intrinsic alignment of galaxies, scatters and biases in photometric redshifts, residual uncertainties in the shear measurement, and modeling of the matter power spectrum. The accuracy of our power spectrum measurement method as well as our analytic model of the covariance matrix are tested against realistic mock shear catalogs. For a flat Λ cold dark matter model, we find $S\,_{8}\equiv \sigma _8(\Omega _{\rm m}/0.3)^\alpha =0.800^{+0.029}_{-0.028}$ for α = 0.45 ($S\,_8=0.780^{+0.030}_{-0.033}$ for α = 0.5) from our HSC tomographic cosmic shear analysis alone. In comparison with Planck cosmic microwave background constraints, our results prefer slightly lower values of S8, although metrics such as the Bayesian evidence ratio test do not show significant evidence for discordance between these results. We study the effect of possible additional systematic errors that are unaccounted for in our fiducial cosmic shear analysis, and find that they can shift the best-fit values of S8 by up to ∼0.6 σ in both directions. The full HSC survey data will contain several times more area, and will lead to significantly improved cosmological constraints.
We present a joint cosmological analysis of weak gravitational lensing observations from the Kilo-Degree Survey (KiDS-1000), with redshift-space galaxy clustering observations from the Baryon Oscillation Spectroscopic Survey (BOSS) and galaxy-galaxy lensing observations from the overlap between KiDS-1000, BOSS, and the spectroscopic 2-degree Field Lensing Survey. This combination of large-scale structure probes breaks the degeneracies between cosmological parameters for individual observables, resulting in a constraint on the structure growth parameter S8 = σ8√(Ωm/0.3) = 0.766−0.014+0.020, which has the same overall precision as that reported by the full-sky cosmic microwave background observations from Planck. The recovered S8 amplitude is low, however, by 8.3 ± 2.6% relative to Planck. This result builds from a series of KiDS-1000 analyses where we validate our methodology with variable depth mock galaxy surveys, our lensing calibration with image simulations and null-tests, and our optical-to-near-infrared redshift calibration with multi-band mock catalogues and a spectroscopic-photometric clustering analysis. The systematic uncertainties identified by these analyses are folded through as nuisance parameters in our cosmological analysis. Inspecting the offset between the marginalised posterior distributions, we find that the S8-difference with Planck is driven by a tension in the matter fluctuation amplitude parameter, σ8. We quantify the level of agreement between the cosmic microwave background and our large-scale structure constraints using a series of different metrics, finding differences with a significance ranging between ∼3σ, when considering the offset in S8, and ∼2σ, when considering the full multi-dimensional parameter space.
We present a tomographic cosmic shear analysis of the Kilo-Degree Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING). This is the first time that a full optical to near-infrared data set has been used for a wide-field cosmological weak lensing experiment. This unprecedented data, spanning 450 deg 2 , allows us to improve significantly the estimation of photometric redshifts, such that we are able to include robustly higher-redshift sources for the lensing measurement, and -most importantly -solidify our knowledge of the redshift distributions of the sources. Based on a flat ΛCDM model we find S 8 ≡ σ 8√ Ω m /0.3 = 0.737 +0.040 −0.036 in a blind analysis from cosmic shear alone. The tension between KiDS cosmic shear and the Planck-Legacy CMB measurements remains in this systematically more robust analysis, with S 8 differing by 2.3σ. This result is insensitive to changes in the priors on nuisance parameters for intrinsic alignment, baryon feedback, and neutrino mass. KiDS shear measurements are calibrated with a new, more realistic set of image simulations and no significant B-modes are detected in the survey, indicating that systematic errors are under control. When calibrating our redshift distributions by assuming the 30-band COSMOS-2015 photometric redshifts are correct (following the Dark Energy Survey and the Hyper Suprime-Cam Survey), we find the tension with Planck is alleviated. The robust determination of source redshift distributions remains one of the most challenging aspects for future cosmic shear surveys. Data products from this analysis are available at http://kids.strw.leidenuniv.nl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.