Detailed site-selective spectroscopy has been performed as a function of temperature on the 7 F 0 ↔ 5 D 0 transition of Eu 3ϩ :Y 2 SiO 5 for Eu 3ϩ concentrations of 0.02%, 0.1%, 0.5%, and 1%. Time-domain optical dephasing, spectral hole lifetimes, anisotropic absorption coefficients, inhomogeneous linewidths, and fluorescence lifetimes for Eu 3ϩ ions at both crystallographic sites were measured. The temperature dependence of the optical dephasing, transition energy, and linewidth of the 7 F 0 → 5 D 0 absorption was measured and interpreted in terms of Raman scattering of phonons. Photon echo measurements of optical dephasing gave T 2 values as long as 2.6 ms, approaching the limit set by the fluorescence decay time. Spectral hole lifetimes were measured for temperatures from 2 K to 18 K, with observed lifetimes varying from 1 s at 18 K to an estimated value of greater than 20 days at 2 K. Anisotropic absorption coefficients were measured, and an increase in Eu 3ϩ concentration from 0.02% to 7% produced an increase in the inhomogeneous linewidth ⌫ inh from 0.5 GHz to ϳ150 GHz, indicating that Eu 3ϩ doping induces significant strain in the crystal. New determinations of many energy levels of 7 F J multiplets have been made for Jϭ0 to 6.
The starting mechanisms and dynamics of laser-induced bubble formation at a submerged fiber tip in distilled water were experimentally investigated using pressure measurements and fast flash videography. A fiber guided Ho:YAG laser operating in the free running (τ=200 μs) and Q-switched (τ=45 ns) mode at a wavelength of λ=2.12 μm was used as a light source. It is shown that the beam profile at the distal fiber tip (multimode fiber d=300 μm) exhibits hot spots that result in an inhomogeneous temperature distribution in the heated water volume. Depending on the laser irradiance, three different bubble formation processes are distinguished: bubble formation by heating, by rarefraction (cavitation), and by a combination of these two processes. For laser irradiances of less than 0.5 MW/ cm2 bubble formation takes place at temperatures near the critical point of water (T=280 °C). A rapid decrease in the threshold temperature for bubble formation was found for laser irradiances between 0.5 and 1 MW/cm 2. At laser irradiances higher than 3 MW/cm2, microbubbles with radii of up to 20 μm were formed at the front of the laser pulse even though the average water temperature was far below 100 °C. The water temperature distribution during the laser pulse was determined by numerical simulation. Simultaneous pressure measurements revealed that each subablative laser spike induces a bipolar pressure transient. The onset of the bubble expansion was found to be correlated with a characteristic pressure increase that can be used for on-line monitoring of the ablation process. The distortion of the temporal profile of the pressure wave is shown to be an effect of diffraction. The reduction of pressure by the negative part of the bipolar pressure transients leads to a lowering of the evaporation pressure and therefore to the initiation of bubbles by cavitation. With increasing irradiance this mechanism becomes more efficient.
The cloning and expression of autofluorescent proteins in living matter, combined with modern imaging techniques, have thoroughly changed the world of bioscience. In particular, such proteins are widely used as genetically encoded labels to track the movement of proteins as reporters of cellular signals and to study protein-protein interactions by fluorescence resonance energy transfer (FRET). Their optical properties, however, are complex and it is important to understand these for the correct interpretation of imaging data and for the design of new fluorescent mutants. In this Minireview we start with a short survey of the field and then focus on the photo- and thermally induced dynamics of green and red fluorescent proteins. In particular, we show how fluorescence line narrowing and high-resolution spectral hole burning at low temperatures can be used to unravel the photophysics and photochemistry and shed light on the intricate electronic structure of these proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.