Aim: To assess the role of lactate as a precursor for butyrate biosynthesis in human colonic microflora. Methods and Results: Three human faecal microfloras were incubated in vitro with media supplemented with 30 mmol l )1 unenriched or 13 C-enriched lactate. Lactate metabolism and short-chain fatty acid (SCFA) production were quantified. Lactate conversion to butyrate was investigated by gas chromatography-mass spectrometry and the pathways involved were identified by 13 C nuclear magnetic resonance spectroscopy. All human faecal microfloras rapidly and completely fermented lactate, yielding approx. 19 mmol l )1 total SCFAs. However, the SCFA composition varied markedly between microfloras. Butyrate was the main end-product for two microfloras but not for the third (60 and 61% vs 27% of the net concentration of SCFA produced respectively). The latter was typified by its ability to produce propionate as a major product (37%), and valerate (3%). 13 C-Labelling showed that butyrate was produced through the acetyl-CoA pathway and that the three microfloras possessed significant differences in their metabolic pathways for lactate consumption. Conclusions: In contrast to the ruminal microflora, the human intestinal microflora can utilize both D D-and L L-lactate as precursors for butyrate synthesis. Inter-individual variation is found. Significance and Impact of the Study: This study suggests that the butyrogenic capability of colonic prebiotics could be related to lactate availability. These findings will direct the development of selection strategies for the isolation of new butyrate-producing bacteria among the lactate-utilizing bacteria present in the human intestinal microfloras.
Interlaboratory performance statistics was determined for a method developed to measure the resistant starch (RS) content of selected plant food products and a range of commercial starch samples. Food materials examined contained RS (cooked kidney beans, green banana, and corn flakes) and commercial starches, most of which naturally contain, or were processed to yield, elevated RS levels. The method evaluated was optimized to yield RS values in agreement with those reported for in vivo studies. Thirty-seven laboratories tested 8 pairs of blind duplicate starch or plant material samples with RS values between 0.6 (regular maize starch) and 64% (fresh weight basis). For matrixes excluding regular maize starch, repeatability relative standard deviation (RSDr) values ranged from 1.97 to 4.2%, and reproducibility relative standard deviation (RSDR) values ranged from 4.58 to 10.9%. The range of applicability of the test is 2–64% RS. The method is not suitable for products with <1% RS (e.g., regular maize starch; 0.6% RS). For such products, RSDr and RSDR values are unacceptably high.
OBJECTIVE:To explore metabolic and cellular modifications induced during childhood obesity, in a novel animal model of obese mini-piglets. DESIGN: A total of 10 four-month old Yucatan mini-pigs were followed from prepuberty to adulthood. Animals were divided into two groups. The first one had been overfed (OF) a western-type diet and the second one had been normally fed a control recommended human-type diet (NF). MEASUREMENTS: Plasma insulin-like growth factor 1 (IGF-1), insulin, leptin, nonesterified fatty acids, triglycerides (TGs) and glucose were determined at sexual maturity and at young adulthood. Quantitative gene expressions of peroxysome-proliferatoractivated receptors (PPARs), glucose transporter 4, insulin receptor, IGF-1, leptin and interleukin-6 (IL-6) in skeletal muscle, adipose tissue and liver were also measured at both stages. Adult insulin sensitivity was measured via euglycaemichyperinsulinaemic clamps. RESULTS: Increased body weight in adult OF pigs was associated with increased body size and low insulin sensitivity. Sexually mature OF pigs had higher IGF-1 plasma concentrations than their lean littermates (Po0.05). In the OF group, TGs and glucose were both decreased (Po0.05). Muscle PPARg and a in OF pubescent pigs as compared to NF pigs were 11 times higher and 20 times lower, respectively (Po0.01). CONCLUSION: Obesity and insulin resistance induced by overfeeding mini-pigs during development and puberty were not associated with the cluster of metabolic modifications frequently observed in their adult littermates. Increased IGF-1 concentrations and modifications of skeletal muscle PPAR (a and g) expressions may help the young obese pig to partially regulate its glycaemia and triglyceridaemia through an increase of fat mass, which maintains its high insulin sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.