The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10(-9) over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10(-11), supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.
We investigate the magneto-transport properties of epitaxial graphene single-layer on 4H-SiC(0001), grown by atmospheric pressure graphitization in Ar, followed by H2 intercalation. We directly demonstrate the importance of saturating the Si dangling bonds at the graphene/SiC(0001) interface to achieve high carrier mobility. Upon successful Si dangling bonds elimination, carrier mobility increases from 3 000 cm2V−1s−1 to >11 000 cm2V−1s−1 at 0.3 K. Additionally, graphene electron concentration tends to decrease from a few 1012 cm−2 to less than 1012 cm−2. For a typical large (30 × 280 μm2) Hall bar, we report the observation of the integer quantum Hall states at 0.3 K with well developed transversal resistance plateaus at Landau level filling factors of ν = 2, 6, 10, 14… 42 and Shubnikov de Haas oscillation of the longitudinal resistivity observed from about 1 T. In such a device, the Hall state quantization at ν = 2, at 19 T and 0.3 K, can be very robust: the dissipation in electronic transport can stay very low, with the longitudinal resistivity lower than 5 mΩ, for measurement currents as high as 250 μA. This is very promising in the view of an application in metrology.
Replacing GaAs by graphene to realize more practical quantum Hall resistance
standards (QHRS), accurate to within 10−9 in relative
value, but operating at lower magnetic fields than 10 T, is an ongoing
goal in metrology. To date, the required accuracy has been reported, only few times,
in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we
report on a graphene device grown by chemical vapour deposition on SiC, which
demonstrates such accuracies of the Hall resistance from 10 T up to
19 T at 1.4 K. This is explained by a quantum Hall effect with
low dissipation, resulting from strongly localized bulk states at the magnetic
length scale, over a wide magnetic field range. Our results show that graphene-based
QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic
conditions, but over an extended magnetic field range. They rely on a promising
hybrid and scalable growth method and a fabrication process achieving
low-electron-density devices.
The structural, optical, and transport properties of graphene grown by chemical vapor deposition (CVD) of propane under hydrogen on the Si face of SiC substrates have been investigated. We show that little changes in temperature during the growth can trigger the passivation of the SiC surface by hydrogen. Depending on the growth condition, hole or electron doping can be achieved, down to a few 10 11 cm −2. When the growth temperature is high (T ≈ 1500-1550 • C), we obtain electron-doped graphene monolayers lying on a buffer layer. When the growth temperature is slightly lowered (T ≈ 1450-1500 • C), hole-doped graphene layers are obtained, lying on a hydrogen-passivated SiC surface, as confirmed by the enhancement of the mobility (of the order of 4500 cm 2 /Vs) and the persistence of weak localization almost up to room temperature (250 K). The high homogeneity of this graphene allows the observation of the half-integer quantum Hall effect, typical of graphene, at the centimeter scale in the best cases. The influence of the SiC steps on the transport properties is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.